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Abstract
In this paper we study polynomials that are orthogonal with respect to a weight
function which is zero on a set of positive measure. These were initially
introduced by Akhiezer as a generalization of the Chebyshev polynomials where
the interval of orthogonality is [−1, α] ∪ [β, 1]. Here, this concept is extended
and the interval is the union of g+1 disjoint intervals, [−1, α1]∪g−1

j=1 [βj , αj+1]∪
[βg, 1], denoted by E.

Starting from a suitably chosen weight function p, and the three-term
recurrence relation satisfied by the polynomials, a hyperelliptic Riemann
surface is defined, from which we construct representations for both the
polynomials of the first (Pn) and second kind (Qn), respectively, in terms of the
Riemann theta function of the surface. Explicit expressions for the recurrence
coefficients an and bn are found in terms of theta functions. The second-order
ordinary differential equation, where Pn and Qn/w (where w is the Stieltjes
transform of the weight) are linearly independent solutions, is found.

The simpler case, where g = 1, is extensively dealt with and the reduction
to the Chebyshev polynomials in the limiting situation, α → β, where the two
intervals merge into one, is demonstrated. We also show that p(x)kn(x, x)/n
for x ∈ E, where kn(x, x) is the reproducing kernel at coincidence, tends to the
equilibrium density of the set E, as n → ∞.

PACS numbers: 02.30.Gp, −2.10.De, 02.30.Mv

1. Preliminaries

A study is made of the generalized Chebyshev polynomials, originally introduced by Akhiezer
as a two disjoint interval generalization of the classical Chebyshev polynomials [4]. We extend
Akhiezer’s original investigation to the case of g+1 intervals, where g > 0 is an integer (g will
turn out to be the genus of a hyperelliptic Riemann surface).
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This paper is organized as follows. In this section we collect some classical facts regarding
orthogonal polynomials for the convenience of the readers. Those who are familiar with the
subject may skip directly to section 2 where the weight function is defined. In section 3 the
Riemann surface of a particular hyperelliptic curve is defined. Various facts concerning the
surface, including functions and differentials on the surface, are introduced. A theorem about
the zeros of certain functions defined on the surface, En and Ẽn (which will be of importance
in the construction of the polynomials), is also presented. In section 4, after a description
of the canonical dissection of the hyperelliptic Riemann surface, the Riemann theta function,
with which we obtain explicit expressions for the fundamental objects, En and Ẽn, is defined.
With the aid of these, we obtain, in section 5, the polynomials of the first and second kind
and the associated recurrence coefficients. In section 6, using the Riemann–Roch theorem,
we determine differential relations for Pn(x) and Qn(x) and from these construct a second-
order ordinary differential equations with Pn and Qn/w (w being the Stieltjes transform of
the weight p) as linearly independent solutions. Using the results of this section, we give in
section 7 an integral representation for the polynomials and consequently deduce the qualitative
behaviour of their zeros. The elliptic case (g = 1) is studied in detail in section 8. In section 9,
we give a description of the determination of the g zeros of the functions En(x) and Ẽn(x). The
paper concludes with section 10, where we study the large n behaviour of Pn(x) and exhibit
the relationship between kn(x, x) and the equilibrium density of the set E in a certain ‘scaling’
limit.

As the problem of similar weights has already been posed by Akhiezer, we should like
to point out here the difference between our methods and those of Tomchuk [25]. In the
paper just mentioned, a more general weight was considered. However, in order to facilitate
the construction of the polynomials orthogonal with respect to these weights, an intermediate
step was required for the function (3.4), first introduced in [2,3]. This function was expressed,
in [25], in terms of quotients of Abelian integrals of the third kind. However, such a construction
entails the determination of certain points of the Riemann surface, which was not explicitly
found. Indeed, the Jacobi inversion problem which involve these points was not stated. In our
formulation (3.4) is expressed in terms of (4.19) together with (5.12), without any unknown
parameters. Such a formula made its first appearance in [13], in the context of inverse scattering
theory. Note that (4.19), a combination of the Riemann theta functions and a particular Abelian
integral of the third kind, appears to be the only way in which an explicit formula can be
found without any free parameters. In the recent literature, problems of such a type were also
studied [18]; however, more in the vein of [25], namely, with emphasis placed on approximation
theory, rather then the explicit constructions of polynomials and the associated recurrence
coefficients in terms of theta functions and Abelian integrals. In fact, the author of the first
paper cited in [18], stated on p 463, that ‘In this paper we do not use elliptic, respectively,
Abelian, functions . . . ’ Our methods clearly differ from those of [18].

Consider the three-term recurrence relations

xUn = Un+1 + bn+1Un + anUn−1 (1.1)

where an > 0, n = 1, 2, . . . , and bn ∈ R, n = 0, 1, 2, . . .. The two linearly independent
polynomial solutions of (1.1) subjected to the initial conditions, U−1 = 0,U0 = 1 and
U0 = 0,U1 = 1 are, respectively,

Pn(x) = xn + p1x
n−1 + · · · , n � 1 (1.2)

Qn(x) = xn−1 + q1x
n−2 + · · · , n � 2. (1.3)

Note that pj and qj , j = 1, 2, . . . are n dependent. According to a characterization theorem
usually attributed to Favard [8], but published in the earlier works of Perron [19], Wintner [29]
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and Stone [22]: if an is strictly positive and bn real, then Pn satisfies the orthogonality relation
with respect to a measure dα(x):∫

E

Pn(x)Pm(x)p(x) dx = hnδmn, (1.4)

where p could possibly have mass points. It can be shown that

Qn(x) =
∫
E

Pn(x) − Pn(t)

x − t
p(t) dt. (1.5)

By (1.2), taking p0 = 1, we find

Qn(x) =
n∑

j=0

pj

n−1−j∑
k=0

xkµn−1−j−k = xn−1 + (µ1 + p1)x
n−2

+ (µ2 + p1µ1 + p2)x
n−3 + · · · , n � 3, (1.6)

where

µj :=
∫
E

tjp(t) dt, j = 0, 1, 2, . . . (1.7)

are the moments of the weight p(t), with µ0 = 1. So qj =∑j

k=0 µj−kpk .
Regarding the zeros of the polynomials Pn(x) and Qn(x), if we assume that the weight

function p(x), differs only from zero on a union of intervals with minE x = a and b, then the
following qualitative facts are well known.

Theorem 1.1. The zeros of Pn(x) are real, simple and contained in the interval (a, b).

From (1.1) the Christoffel–Darboux identity

kn+1(x, t) :=
n∑

j=0

Pj (x)Pj (t)

hj

= 1

hn

Pn+1(x)Pn(t) − Pn+1(t)Pn(x)

x − t
, (1.8)

can be deduced [23, p 42]. From this result one can deduce the following;

Theorem 1.2. Between any two zeros of Pn+1(x) lies a zero of Pn(x).

Using the recurrence relation together with the respective initial conditions for Pn(x) and
Qn(x), we have

Pn(x)Qn+1(x) − Pn+1(x)Qn(x) =
n∏

j=1

aj = hn. (1.9)

From this result we have

Theorem 1.3. Between consecutive zeros of Pn(x) there is a zero of Qn(x) and thus the zeros
of Qn(x) are real, simple and contained in (a, b).

In the following development, the Stieltjes transform of the weight, p, denoted by w, is of
some interest:

w(x) :=
∫
E

p(t)

x − t
dt =

∞∑
j=0

µj

xj+1
, x /∈ E. (1.10)

As x → ∞, we find

Pn(x)w(x) − Qn(x) =
∫
E

Pn(t)

x − t
p(t) dt =

∞∑
j=0

1

xj+1

∫
E

Pn(t)t
jp(t) dt

= 1

xn+1

∫
E

Pn(t)t
np(t) dt + · · · = hn

xn+1
+ O(x−n−2), (1.11)

where the penultimate step above follows from the orthogonality of {Pn}.
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1

α 1 1β α 2 βg−1 1

2 g+1Λ

Figure 1. The contour � is defined to be the union of the simple loops �j , j = 1, . . . , g + 1.

2. Akhiezer’s weight function

Throughout this paper we shall denote by E the interval [−1, α1] ∪g−1
j=1 [βj , αj+1] ∪ [βg, 1] and

refer to the complement of E on the interval [−1, 1] as Ē. Unless otherwise stated we assume
that −1 < αj < βj < 1, j = 1, . . . , g.

Consider the following function defined on the slit complex plane C\E:

p̃(z) = 1

π

√√√√ ∏g

j=1(z − αj )

(z2 − 1)
∏g

j=1(z − βj )
,

where the square root is taken in such a way that p̃(z) ∼ 1
πz

, as Re z → ∞. As z tends
towards a point on E we obtain two purely imaginary values, each of the same modulus but
of opposite sign, depending upon whether the approach is from above or below the cut. This
continuation is used to define a weight function p on E. We adopt the convention that, for
x ∈ E, p(x) = ±ip̃(x ± i0), thus ensuring the weight is positive in E. Hence

p(x) :=




1

π

√√√√ ∏g

j=1(x − αj )

(1 − x2)
∏g

j=1(x − βj )
for x ∈ E

0 otherwise.

(2.1)

This weight function is a generalization of that given in [4, p 158] and is in the form of those
considered in [2] and [3].

The Stieltjes transform, w, can be computed easily by contour integration. We apply the
Cauchy integral formula to p in the multiply connected domain bounded by a circle of infinite
radius and the contour � := ∪g+1

j=1�j , [17], as shown in figure 1. Note that � is sufficiently
close to the intervals that make up E, so as to ensure that the point x lies within the multiply
connected domain. Then continuously deforming � onto the intervals that make up E, we
find

w(x) :=
∫
E

p(t)

x − t
dt, x /∈ E

= 1

2

∫
�

p(t)

x − t
dt =

√√√√ ∏g

j=1(x − αj )

(x2 − 1)
∏g

j=1(x − βj )
, (2.2)

where once again we take the branch of the square root that ensures that w(x) is positive for
x > 1. Expanding w(x) for large |x|,

w(x) = 1

x
+

1

2x2

g∑
j=1

(βj − αj ) + · · · ,

from which the first two moments are found to be µ0 = 1, µ1 = 1
2

∑g

j=1(βj − αj ). Observe
that, since

Pn(x)w(x) + Qn(x) = O(xn−1) (2.3)
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Figure 2. The double sheet structure of R for g = 2.

it follows from (1.13) that

P 2
n (x)w

2(x) − Q2
n(x) = O(x−2)

and consequently

P 2
n (x)

g∏
j=1

(x − αj ) − (x2 − 1)Q2
n(x)

g∏
j=1

(x − βj ) = ηgx
g + · · · + η1x + η0 =: Sg(x).

(2.4)

where {ηj : j = 0, . . . , g} are determined by the coefficients of Pn and Qn.

3. The Riemann surface

The compact Riemann surface R, used throughout this paper is given by the hyperelliptic curve
y, where

y2 = (x2 − 1)
g∏

j=1

(x − αj )(x − βj ), (3.1)

where g is the genus of the surface. A compact Riemann surface is said to be of genus g if it
is conformally equivalent to a sphere with 2g holes connected in pairs by g handles.

The double sheet structure of R, for the case where g = 2, is illustrated in figure 2. We
refer to the sheet where y is positive (negative) as x → ∞ as the +sheet(−sheet). The point
at infinity on these respective sheets is written ∞+(∞−). For any x ∈ C there are two points
on R, one on each sheet. If we denote a point on R corresponding to some x ∈ C as px then
the equivalent point on the other sheet is written p′

x . If x is a branch point of the hyperelliptic
curve then p′

x = px . The local parameter around the point pb, where b is a branch point, is
given by ξ = √

x − b, while around other points on the surface ξ = x − b.

Divisors. A divisor D on the Riemann surface R is the formal sum of a finite number of its
points with integral coefficients:

D =
∑
j

njpj , pj ∈ R. (3.2)

The degree of a divisor, denoted by deg D, is given by the number
∑

j nj . The set of all divisors
on the Riemann surface R forms an Abelian group Div(R) with respect to the naturally defined
operation of addition. We say a divisor D is positive and write D � 0 if nj � 0 for all j .
This idea can be extended to enable a partial ordering of divisors, taking D � D′ to mean
D − D′ � 0.

The divisor of a given function f on R, written (f ), is defined to be the sum (3.2) where
pi is a zero or a pole and ni the respective multiplicity, as determined by expansions in terms
of the local parameter about the relevant point. It is assumed that nj > 0 if pj is a zero and
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nj < 0 if pj is a pole. The divisor of an Abelian differential, (dω), is defined in a similar
fashion. Note the following results that hold for any function f and any Abelian differential
dω defined on a Riemann surface of genus g [21, ch 6], [7, ch 2];

deg(f ) = 0, deg(dω) = 2g − 2. (3.3)

The function f (Abelian differential dω) is said to be divisible by the divisor D if
(f ) − D � 0 ((dω) − D � 0), written as D|f (D|dω). Put another way, if the divisor
D is

D =
l∑

j=1

pxj −
m∑

j=l+1

pxj ,

then D|f means that, counting multiplicities, the points {pxj : j = 1, . . . , l} are among the
zeros of f and the poles of f are at points from amongst {pxj : j = l + 1, . . . , m}.

Following Akhiezer [4, p 160], consider the function

En(px) := Pn(x) − Qn(x)

w(x)
, (3.4)

where w is given by (2.2), but defined on R. So the range of E is not confined to the values it
takes on the +sheet. In order to determine the divisor composition of En, note that(

1

w(x)

)
=
(

y∏g

j=1(x − αj )

)
= −∞+ − ∞− + p1 + p−1 +

g∑
j=1

(pβj
− pαj

). (3.5)

Near ∞±, we find

1

w(x)
= ±x + O(1),

so by (1.13) as px → ∞+

En(px) = O(x−n). (3.6)

Therefore En(px) has a zero of order n at ∞+. As px → ∞−, by the definitions of Pn(x) and
Qn(x), we find that for n > 0

En(px) = 2xn + O(xn−1). (3.7)

Therefore En(px) has a pole of order n at ∞−. It follows from (3.5) that En has simple poles at
{pαj

: j = 1, . . . , g} and since deg(En) = 0, En must have g zeros at {pγj : j = 1, . . . , g}. The
determination of these zeros, which can in general lie on either sheet of the Riemann surface
R, will be discussed later. For the time being we note that the points pγj depend upon n and
the set E. Hence

(En(px)) = n∞+ − n∞− +
g∑

j=1

(pγj − pαj
). (3.8)

For the ‘conjugate’ function

Ẽn(px) := Pn(x) +
Qn(x)

w(x)
, (3.9)

it can be shown in a similar way that

(Ẽn(px)) = −n∞+ + n∞− +
g∑

j=1

(p′
γj

− pαj
), (3.10)
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where it is understood that p′
γj

lies on the other sheet of R to that of pγj . Combining this result
with (3.8) it follows that

(EnẼn) =
g∑

j=1

(pγj + p
′
γj

− 2pαj
). (3.11)

Since

En(px)Ẽn(px) = P 2
n (x) − Q2

n(x)

w2(x)
=:

Sg(x)∏g

j=1(x − αj )
, (3.12)

we see that EnẼn has zeros {γj : j = 1, . . . , g}, that satisfy
ηj

ηg
= (−1)g−jϕg−j (γ1, . . . , γg), j = 0, . . . , g − 1, (3.13)

where ϕj is the j th elementary symmetric function and the ηj are as defined in (2.4). We now
say that, following qualitative deduction regarding the γi :

Theorem 3.1. The roots of the polynomial Sg(x) are real, simple and when ordered so that
γ1 < γ2 < · · · < γg , are such that γj ∈ [αj , βj ], j = 1, . . . , g.

Proof. The {γj : j = 1, . . . , g} are the g solutions to the equation

Sg(x) = P 2
n (x)

g∏
j=1

(x − αj ) − Q2
n(x)(x

2 − 1)
g∏

j=1

(x − βj ) = 0.

Consider any one of the intervals [αk, βk], k = 1, . . . , g, and note that on the interior points
of this interval (x2 − 1)

∏g

j=1(x − βj ) and
∏g

j=1(x − αj ) have the same sign. It then follows
that Sg(αk) and Sg(βk) are of opposite sign or that one or possibly both are identically equal
to zero. In either case we conclude that the interval contains at least one zero of Sg(x). Now,
since Sg(x) is a polynomial of degree g and each of the g intervals [αk, βk] contains at least
one zero, the claim follows. �

The following corollaries will be useful later.

Corollary 3.2. For any j = 1, . . . , g, Pn(βj ) = 0 if and only if γj = βj and Qn(αj ) = 0 if
and only if γj = αj . It then follows that for fixed n we cannot have Pn(βj ) = 0 = Qn(αj ).

Corollary 3.3. Given that for a particular j and fixed n, γj ∈ (αj , βj ), it follows from the fact
that the zeros of Pn(x) are distinct from those of Qn(x), that γj is neither a zero of Pn(x) nor
Qn(x).

4. The expression of E and Ẽ in terms of the Riemann theta function

A canonical basis of cycles on R is chosen as shown in figure 3 [7, ch 2]. For a hyperelliptic
Riemann surface of genus g, a basis for the set of holomorphic differentials is given by{

dx

y
,
x dx

y
, . . . ,

xg−1 dx

y

}
.

Such differentials that have no pole are called Abelian differentials of the first kind (a differential
with pole but vanishing residue is called an Abelian differential of the second kind and a
differential with non-vanishing residue is an Abelian differential of the third kind). A normal
basis {dω1, . . . , dωg} that satisfies the condition∫

aj

dωk = δjk j, k = 1, 2, . . . , g, (4.1)
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2

1

b1

βα 1 α2 β2-1 1

a2

b

a1

Figure 3. The canonical basis of cycles for R with genus g. The parts of the cycles that lie on the
− sheet are indicated by broken curves.

is chosen. This is achieved by setting

dωj =
g∑

k=1

(A−1)jk
xg−k dx

y
(4.2)

with the condition that

Ajk =
∫

ak

xg−j

y
dx. (4.3)

The B-periods matrix of the basis {dωj : j = 1, . . . , g} is then defined by the relations

Bjk :=
∫

bk

dωj . (4.4)

We notice that, for the hyperelliptic surface considered, it is easily shown, by a continuous
deformation of the a-cycles, that A is a real matrix. It then follows that ReBjk = 0 for
j, k = 1, . . . , g. From the Riemann bilinear relationships [7, p 26] this matrix is also symmetric
and has the property that Im B is positive definite.

The period lattice � is defined by

� := {N + BM : M ,N ∈ Z
g}.

If we introduce in C
g the equivalence relation

Z ≡ Z ′ ⇔ Z − Z ′ ∈ �,

then the Jacobian variety of the Riemann surface R is the quotient of C
g with this equivalence

and is written C
g/�. The Abel map with base point p1 maps the surface R into it is a Jacobian

variety and is given by

ω(p) : R 
 p �−→
∫ p

p1

dω ∈ C
g/�, (4.5)

where ∫ p

p1

dω :=
(∫ p

p1

dω1, . . . ,

∫ p

p1

dωg

)T

Before proceeding we state two key results from the theory of Riemann surfaces.

Theorem 4.1. (Abel’s theorem) [21, ch 7], [7, ch 2]. The set of points {pj : j = 1, . . . , m}
and {qj : j = 1, . . . , m} are the zeros and poles, respectively, of some meromorphic function
on the Riemann surface R if and only if

m∑
j=1

∫ pj

qj

dω ≡ 0 ( modulo the periods).



Generalized Chebyshev polynomials 4659

Theorem 4.2. (Riemann–Roch theorem) [21, ch 6], [7, ch 2]. Let the linear space of functions
meromorphic on the Riemann surface R and divisible by a divisor D be FD and the space of
Abelian differentials on the surface R that are divisible by D be d�D. Then for any divisor
D on the Riemann surface R of genus g,

dim F−D − dim d�D = 1 − g + deg D.

Riemann’s theta function ϑ is defined as follows:

ϑ(s;B) = ϑ(s) :=
∑
t∈Zg

exp(iπ(t, Bt) + 2π i(t, s)), (4.6)

where (s = (s1, . . . , sg)T ) is any complex vector and (· , · ) denotes the Euclidean scalar
product. The convergence of the theta function is due to the fact that Im B is positive definite.
The theta function has the following properties. For t ∈ Z

g ,

symmetry ϑ(−s) = ϑ(s)

periodicity (s + t) = ϑ(s)

quasi periodicity ϑ(s + Bt) = e−iπ [(t,Bt)+2(t,s)]ϑ(s).

(4.7)

We note the following theorem regarding the zeros of theta functions—this result is crucial
when representing a meromorphic function on the Riemann surface in terms of theta functions.

Theorem 4.3. [21, p 167]. If the function

ψ(p) := ϑ(ω(p) − s − C),

with C a vector of Riemann constants

Cj = 1 + Bjj

2
−

∑
1�k�g;k �=j

∫
ak

ωj (p) dωk(p), j = 1, . . . , g,

does not vanish identically in p, then it has g zeros q1, . . . , qg that satisfy the congruence
g∑

j=1

ω(qj ) ≡ s(modulo the periods).

It should be noted that the vector of Riemann constants depends on the base point of the Abel
map, which is taken to be p1 throughout this paper. Furthermore, for a hyperelliptic Riemann
surface, the expression for C, can be simplified to

C =
g∑

j=1

uαj
, (4.8)

according to [20, theorem 9, p 181]. Using theorem 4.3, together with the fact that, if two
meromorphic functions f and g on R have the same zeros and poles, then f = κg for some
constant κ enables the theta function construction of En [21, p 177]. Using the shorthand
notation that u± := ω(∞±) and ua := ω(pa) for all other points pa on the surface R,
from (3.8) we write

En(px) = δn
ϑn(ux − u+ + K)

∏g

j=1 ϑ(ux − uγj + K)

ϑn(ux − u− + K)
∏g

j=1 ϑ(ux − uαj
+ K)

, (4.9)

where K := −C−∑g

j=2 uβj
and for any givenn, δn is a constant that depends uponE only, the

value of which is easily determined by the behaviour of En at a point on R. Note the choice of
{pβj

: j = 2, . . . , g} as the other g−1 zeros of the respective theta functions in the construction
above. This choice is not unique, but since the divisor

∑g

j=2 pβj
is non-special or general it

is a choice that ensures that none of the composite theta functions are identically zero. For



4660 Y Chen and N Lawrence

further information on general divisors we refer the reader to [21, ch 10] and [7, p 33], where
the former reference presents a complete account on the zeros of Riemann’s theta function and
explains in particular the conditions under which a theta function is identically zero. We point
the reader to theorem 3 on p 169.

Clearly the vectors uγj depend upon the pγj which in turn depends upon n. The n

dependence can be uncovered straightforwardly from Abel’s theorem:
g∑

j=1

uγj ≡
g∑

j=1

uαj
− n(u+ − u−)(modulo the periods). (4.10)

The determination of {pγj : j = 1, . . . , g} from (4.10) is known as the Jacobi inversion
problem [21, ch 8], the solution to which is that the {pγj : j = 1, . . . , g} are the g zeros of the
function ϑ(ux − C0) where

C0 = C +
g∑

j=1

uαj
− n(u+ − u−).

Note that there is in fact a stronger congruence relating the {pγj : j = 1, . . . , g} to known
points on the surface. Writing ux → ux + Bek , where ek is a g vector defined by (ek)l = δkl ,
k, l = 1, . . . , g, we require that this transformation leaves the expression for En(px) unchanged.
It then follows from the quasi-periodic property of the theta function given in relationship (4.7)
that

g∑
j=1

uγj ≡
g∑

j=1

uαj
− n(u+ − u−) (mod Z

g). (4.11)

The following expression for Ẽn(px) is found in a completely analogous manner to that
above: using (3.10) we find

Ẽn = δ̃n
ϑn(ux − u− + K)

∏g

j=1 ϑ(ux − u′
γj

+ K)

ϑn(ux − u+ + K)
∏g

j=1 ϑ(ux − uαj
+ K)

, (4.12)

where we have written u′
γj

:= ω(p′
γj
). Again using the condition that this expression is

invariant under the transformation ux → ux + Bek , we uncover a relationship between the
{p′

γj
: j = 1, . . . , g} and known points on the surface, finding that

g∑
j=1

u′
γj

≡
g∑

j=1

uαj
+ n(u+ − u−) (mod Z

g). (4.13)

It is also possible to give an alternative representation of the functions En and Ẽn. Consider
the Abelian integral of the third kind:

�(px) =
∫ px

p1

d� :=
∫ px

p1

tg +
∑g−1

j=0 kj t
j

y
dt. (4.14)

This integral is normalized [7, p 29] in such a way that∫
ak

d� = 0, k = 1, . . . , g, (4.15)

thus providing g equations for the determination of {kj : j = 0, . . . , g − 1}. Note that this
requirement implies that∫ βk

αk

d� = 0, k = 1, . . . , g. (4.16)
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We denote by B̂ the vector whose components are

B̂j = 1

2π i

∫
bj

d�, j = 1, . . . , g. (4.17)

Observe that, as p → ∞±,

�(px) = ± ln x + O(1). (4.18)

This fact and theorem 4.3 lead to the following representations [7, section 2.7]:

En(px) = �ne−n�(px )
ϑ(ux −∑g

j=1 uγj − C)

ϑ(ux −∑g

j=1 uαj
− C)

Ẽn(px) = �̃nen�(px )
ϑ(ux −∑g

j=1 u′
γj

− C)

ϑ(ux −∑g

j=1 uαj
− C)

,

(4.19)

where �n and �̃n depend upon E and n alone and can be determined, as we shall see in the
next section, by knowledge of the local behaviour of En and Ẽn around certain points on the
Riemann surface. Note that the path joining the points p1 and px is the same in both �(px)

and ux . If we now add to this contour an arbitrary cycle, bk , k = 1, . . . , g, the requirement
that both En and Ẽn be invariant under such an alteration to the path of integration then implies
the following relationships:

g∑
j=1

uγj ≡
g∑

j=1

uαj
− nB̂ (mod Z

g)

g∑
j=1

u′
γj

≡
g∑

j=1

uαj
+ nB̂ (mod Z

g).

(4.20)

Thus observing (4.11), we note the following congruence:

B̂ ≡ u+ − u− (mod Z
g). (4.21)

Henceforth we denote D := 2
∑g

j=1 uαj
, consequently referring to (4.8),

En(px) = �ne−n�(px )
ϑ(ux + nB̂ − D)

ϑ(ux − D)

Ẽn(px) = �̃nen�(px )
ϑ(ux − nB̂ − D)

ϑ(ux − D)
.

(4.22)

The advantage of these representations over those of (4.9) and (4.12) is that the functions En

and Ẽn are given explicitly without needing to solve the Jacobi inversion problem. In this
respect, we note that this is a particularly useful feature when considering the general scenario
where g > 1. In the elliptic case where g = 1 both types of expression are equally applicable.
These explicit expressions for En and Ẽn are similar to those which first appeared in the theory
of integrable systems. In this context this type of expression was first put forward in [13] and
applied in [13–15] to the construction of finite-gap solutions of the non-linear Schrödinger and
KdV equations.

5. The polynomials Pn and Qn and the coefficients of the recurrence relation they satisfy

In this section the importance of the theta function constructions for En and Ẽn is realized.
Using these expressions we determine explicit formulae for the polynomials of the first and
second kind that follow from consideration of the Akhiezer weight. In the process we shall
determine expressions for the coefficients of the recurrence relation these polynomials satisfy.
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From (1.13) observe that, as px → ∞+,

En(px) = 1

w(x)

∞∑
j=n

1

xj+1

∫
E

Pn(t)t
jp(t) dt,

where w(x) = x−n + O(x−n−1). Writing tn = ∑n
k=0 λk(n)Pn−k(t), where λ0(n) = 1, and

using the orthogonality relation satisfied by Pn, we find

En(px) = hn

xn
+ O(x−n−1), px → ∞+. (5.1)

It also follows from (1.13) that for n � 1 as px → ∞−, Pn(x) = −Qn(x)

w(x)
+ O(x−n) and hence

En(px) = 2Pn(x) + O(x−n), px → ∞−(n � 1). (5.2)

We can then similarly deduce that

Ẽn(px) =



hn

xn
+ O(x−n−1) as px → ∞−

2Pn(x) + O(x−n) as px → ∞+ (n � 1).
(5.3)

Now we compare the results above with expansions obtained from (4.22). Examining the
behaviour of �(px) as px → ∞±, recall that

�(px) =
∫ px

p1

tg +
∑g−1

j=0 kj t
j

y
dt, (5.4)

where we assume without loss of generality that the path of integration projects onto the interval
[1, x]. Writing s = 1

x
, we find that, as px → ∞±,

d�

ds
= ∓

[
1

s
+

(
kg−1 +

1

2

g∑
j=1

(αj + βj )

)
+ O(s)

]
.

Thus it follows that

�(px) =



ln x + χ0 − χ1

x
+ O(x−2) as px → ∞+

− ln x − χ0 +
χ1

x
+ O(x−2) as px → ∞−,

(5.5)

where

χ0 =
∫ ∞+

p1

(
tg +

∑g−1
j=0 kj t

j

y
− 1

t

)
dt

χ1 = kg−1 + 1
2

g∑
j=1

(αj + βj ).

(5.6)

Considering the behaviour of the g vector ux in such limits we write ux = u± + δu. Hence it
follows that

δu =
∫ px

∞±
dω, (5.7)

where from (4.2)

dωj =
g∑

k=1

(A−1)jk
xg−k dx

y
, j = 1, . . . , g.

It is then easily shown that

δuj = ∓ (A−1)j1

x
+ O(x−2), px → ∞±. (5.8)
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Note the following series expansion:

ϑ(u + δu) = ϑ(u) +
g∑

j=1

ϑ ′
j (u)δuj + O(δuj δuk) (5.9)

where

ϑ ′
j (u) := ∂

∂uj

ϑ(u).

Thus expanding (4.22) around the point at ∞+,

En(px) = �ne−nχ0ϑ(u+ + nB̂ − D)

ϑ(u+ − D)
x−n + O(x−n−1)

Ẽn(px) = �̃nenχ0ϑ(u+ − nB̂ − D)

ϑ(u+ − D)
xn + O(xn−1).

(5.10)

Similarly around ∞−,

En(px) = �nenχ0ϑ(u+ − nB̂ + D)

ϑ(u+ + D)
xn + O(xn−1)

Ẽn(px) = �̃ne−nχ0ϑ(u+ + nB̂ + D)

ϑ(u+ + D)
x−n + O(x−n−1),

(5.11)

where we have observed that u± ∈ R
g , which follows from the reality of A, and consequently

implies that u+ + u− ≡ 0 modulo Z
g . Comparing the ∞− expression for En and the ∞+

expression for Ẽn with the respective results of (5.2) and (5.3), we deduce that for n � 1

�n = 2e−nχ0
ϑ(u+ + D)

ϑ(u+ − nB̂ + D)

�̃n = 2e−nχ0
ϑ(u+ − D)

ϑ(u+ − nB̂ − D)
.

(5.12)

Using this result, it then follows by equating the first expression of (5.10) and the second
in (5.11) with their respective expansions given in (5.1) and (5.3) that, for n � 1,

hn = 2e−2nχ0
ϑ(u+ + D)ϑ(u+ + nB̂ − D)

ϑ(u+ − D)ϑ(u+ − nB̂ + D)

= 2e−2nχ0
ϑ(u+ − D)ϑ(u+ + nB̂ + D)

ϑ(u+ + D)ϑ(u+ − nB̂ − D)
. (5.13)

It follows straightforwardly from the recurrence relation of (1.1) and the orthogonality
relationship satisfied by Pn that anhn−1 = hn, so that using the first result of (5.13),

an =




2e−2χ0
ϑ(u+ + D)ϑ(u+ + B̂ − D)

ϑ(u+ − D)ϑ(u+ − B̂ + D)
if n = 1

e−2χ0
ϑ(u+ − (n − 1)B̂ + D)ϑ(u+ + nB̂ − D)

ϑ(u+ + (n − 1)B̂ − D)ϑ(u+ − nB̂ + D)
if n > 1,

(5.14)

since h0 = 1.
In order to determine an expression for the other recurrence coefficient bn, we expand

the expression for En given in (4.22) about the point at ∞−, obtaining the first two terms.
Using (5.5) and (5.9) it follows, after some elementary calculations, that

En(px) = 2xn + 2(K(n) − K(0) − nχ1)x
n−1 + O(xn−2), px → ∞−, (5.15)
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where

K(n) :=
g∑

j=1

(A−1)j1

ϑ ′
j (u

+ − nB̂ + D)

ϑ(u+ − nB̂ + D)
. (5.16)

Thus by using (5.2) we identify

p1(n) = K(n) − K(0) − nχ1. (5.17)

From the relation (1.1) it is easily seen that bn = p1(n − 1) − p1(n). Consequently

bn = K(n − 1) − K(n) + χ1. (5.18)

It is possible to make this expression more explicit; from the orthogonality relationship of (1.4)
it can be shown that

b1 = −p1(n) = 1
2

g∑
j=1

(βj − αj ).

Thus comparing this with the expression obtained by setting n = 1 in (5.18) we find

χ1 = 1
2

g∑
j=1

(βj − αj ) + K(1) − K(0),

and consequently that

bn = 1
2

g∑
j=1

(βj − αj ) + K(1) − K(0) + K(n − 1) − K(n)

= 1
2
∑g

j=1(βj−αj )+
∑g

j=1(A
−1)j1

[
ϑ ′
j
(u+−B̂+D)

ϑ(u+−B̂+D)
− ϑ ′

j
(u++D)

ϑ(u++D)
+

ϑ ′
j
(u+−(n−1)B̂+D)

ϑ(u+−(n−1)B̂+D)
− ϑ ′

j
(u+−nB̂+D)

ϑ(u+−nB̂+D)

]
. (5.19)

It is shown in section 10 that D is given by (10.33). Using this, the quasi-periodicity of the
theta function and the reality of u± and B̂, we see that an given by (5.14) is strictly positive
and bn given by (5.19) is real.

Having determined �n and �̃n, from (4.22) we have explicit expressions for En and Ẽn.
The polynomials are

Pn(x) = 1
2 (En(px) + Ẽn(px))

Qn(x) = w(x)

2
(Ẽn(px) − En(px)).

(5.20)

In terms of the theta functions, for n � 1,

Pn(x) = e−n(χ0+�(px ))
ϑ(u+ + D)ϑ(ux + nB̂ − D)

ϑ(u+ − nB̂ + D)ϑ(ux − D)

+ en(�(px )−χ0)
ϑ(u+ − D)ϑ(ux − nB̂ − D)

ϑ(u+ − nB̂ − D)ϑ(ux − D)
, (5.21)

and

Qn(x) =
√√√√ ∏g

j=1(x − αj )

(x2 − 1)
∏g

j=1(x − βj )

[
en(�(px )−χ0)

ϑ(u+ − D)ϑ(ux − nB̂ − D)

ϑ(u+ − nB̂ − D)ϑ(ux − D)

− e−n(χ0+�(px ))
ϑ(u+ + D)ϑ(ux + nB̂ − D)

ϑ(u+ − nB̂ + D)ϑ(ux − D)

]
, (5.22)

where in both these expressions px can, without loss of generality, be taken to lie on the +sheet
of R, with the path of integration from p1 to px the same for both ux and �(px).
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Another interesting quantity in the general theory of orthogonal polynomials, called the
moment or Hankel matrix, is denoted as Hn and defined to be

Hn = [µj+k]j,k=0,1,...,n, (5.23)

where the µj are the moments of a given weight function. According to [23, p 28] the
determinant of this matrix is given by

∏n
j=1 hj . Consequently, using (5.13), we find that the

Hankel determinant for the weight considered here is given by

det Hn = 2n exp[−n(n + 1)χ0]

[
ϑ(u+ + D)

ϑ(u+ − D)

]n
ϑ((2n + 1)u+ − D)

ϑ(u+ − D)
, (5.24)

where we have noticed that (4.21) implies B̂ ≡ 2u+ modulo Z
g .

6. The second-order differential equation satisfied by Pn(x)

In this section we concern ourselves with the determination of various differential relations
satisfied by the polynomials. In particular, by using the Riemann–Roch theorem we devise
representations for (d/dx) ln En and (d/dx) ln Ẽn in terms of algebraic functions of x. When
compared with equivalent expressions obtained directly from the definitions of En and Ẽn, we
can ultimately derive a second-order ordinary differential equation satisfied by Pn and Qn/w.

We proceed by investigating the divisor structure of (d/dx) ln En and (d/dx) ln Ẽn. It has
already been shown that, as px → ∞+

1,

En(px) ∼ x−n

Ẽn(px) ∼ xn.
(6.1)

In the neighbourhood of ∞−

En(px) ∼ xn

Ẽn(px) ∼ x−n.
(6.2)

Locally around pαj
, j = 1, . . . , g, it follows from (5.9) that

ϑ(ux − D) �
g∑

k=1

ϑ ′
k(uαj

− D)δuk,

where

δuk =
∫ px

pαj

dωk.

Since αj is a branch point of the hyperelliptic curve that defines the surface R, the local
parameter is given by ξ = √

x − αj . Using (4.2) we can expand the integrands in terms of ξ ,
finding that δuk = O(ξ). Hence

ϑ(ux − D) ∼ ξ, px → pαj
,

and thus in this limit it follows from (4.19) that

En(px) ∼ ξ−1

Ẽn(px) ∼ ξ−1.
(6.3)

1 Note that throughout this paper we use the following convention. The relation f (x) � g(x) as x → x0, means
that limx→x0 f (x)/g(x) = 1 and f (x) ∼ g(x) as x → x0 means there exist positive constants A and B such that
A < limx→x0 |f (x)/g(x)| < B.
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Allowing px → pγj , j = 1, . . . , g,

ϑ(ux + nB̂ − D) �
g∑

k=1

ϑ ′
k(uγj + nB̂ − D)δuk,

where

δuk =
∫ px

pγj

dωk.

We assume without loss of generality that γj ∈ (αj , βj ) (the reader will note that the singular
cases where γj = αj or βj follow quite naturally later by allowing γj to tend towards either
of these points). Hence the local parameter is ξ = x − γj . Expansion of the integrand then
gives δuj = O(ξ) and consequently

En(px) ∼ ξ, px → pγj . (6.4)

Similarly we find that, as px → p′
γj

, j = 1, . . . , g, ξ = x − γj and

Ẽn(px) ∼ ξ. (6.5)

Using the above results, we are now in a position to determine the behaviour of d ln En/dx
and d ln Ẽn/dx in the locality of all the points where they diverge. In the followingP0(x)denotes
a regular power series in x with non-zero coefficient of x0. Using (4.19), we summarize the
findings.
Around ∞+:

En = 1

xn
P0

(
1

x

)
⇒ d

dx
ln En = −n

x
+ O(x−2).

Ẽn = xnP0

(
1

x

)
⇒ d

dx
ln Ẽn = n

x
+ O(x−2).

(6.6)

Around ∞−:

En = xnP0

(
1

x

)
⇒ d

dx
ln En = n

x
+ O(x−2).

Ẽn = 1

xn
P0

(
1

x

)
⇒ d

dx
ln Ẽn = −n

x
+ O(x−2).

(6.7)

Around pαj
(ξ = √

x − αj ):

En = 1

ξ
P0(ξ) ⇒ d

dx
ln En = − 1

2ξ 2
+ O(ξ−1).

Ẽn = 1

ξ
P0(ξ) ⇒ d

dx
ln En = − 1

2ξ 2
+ O(ξ−1).

(6.8)

Around pγj (ξ = x − γj ):

En = ξP0(ξ) ⇒ d

dx
ln En = 1

ξ
+ O(1). (6.9)

Around p′
γj
(ξ = x − γj ):

Ẽn = ξP0(ξ) ⇒ d

dx
ln Ẽn = 1

ξ
+ O(1). (6.10)
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Around pb = p±1, pβ1 or pβ2(ξ = √
x − b):

En = P0(ξ) ⇒ d

dx
ln Ẽn ∼ 1

ξ
.

Ẽn = P0(ξ) ⇒ d

dx
ln Ẽn ∼ 1

ξ
.

(6.11)

It is easily verified from (4.19) that locally around all other points on R the functions
(d/dx) ln En and (d/dx) ln Ẽn are bounded. It then becomes clear that(

d

dx
ln En

)
= ∞+ + ∞− − p1 − p−1 −

g∑
j=1

(2pαj
+ pβj

+ pγj ) + 4g zeros =: −d + 4g zeros,

(6.12)

and(
d

dx
ln Ẽn

)
= ∞+ + ∞− − p1 − p−1 −

g∑
j=1

(2pαj
+ pβj

+ p
′
γj
) + 4g zeros =: −d̃ + 4g zeros.

(6.13)

Having determined the divisor structure, we now find representations for (d/dx) ln En(px)

and (d/dx) ln Ẽn(px) in terms of algebraic functions on the Riemann surface. We denote the
linear space of meromorphic functions on R that are divisible by −d as F−d. Recall that this is
the space of functions that include at least simple zeros at ∞+ and ∞− amongst their zeros and
which only have poles at points from amongst the set {p1, p−1, pαj

, pβj
, pγj : j = 1, . . . , g},

provided that poles at the pαi
are no more than double poles and those at other points from the

set are simple poles.

Theorem 6.1. With the divisor d defined by (6.12), the dimension of the linear space F−d is
3g + 1.

Proof. Suppose that there exists d�, a differential on R with the property that d|d�. This
requires that d� has at least simple zeros at the points p−1, p1, {pβj

: j = 1, . . . , g} and
{pγj : j = 1, . . . , g} and double zeros at the points {pαj

: j = 1, . . . , g}, and having no more
than simple poles at ∞+ and ∞− as they are only poles. This implies that such a differential
would have the property that deg(d�) � 4g. However, by virtue of (3.3), deg(d�) = 2g−2, a
contradiction that allows us to conclude that there is no Abelian differential on R that is divisible
by d. It then follows directly from the Riemann–Roch theorem that dim F−d = 3g + 1. �

It may be shown in an entirely analogous way that dim F−d̃ = 3g + 1. We can now
construct a basis for the set of meromorphic functions on R that are divisible by −d. It is
easily verified that the following set is suitable:{

1

y
,
x

y
, . . . ,

xg

y
,

1

x − α1
, . . . ,

1

x − αg

,
y + y1

y(x − γ1)
, . . . ,

y + yg

y(x − γg)

}
,

where, for j = 1, . . . , g,

yi := y|px=pγj
. (6.14)

Similarly a basis for F−d̃ is given by{
1

y
,
x

y
, . . . ,

xg

y
,

1

x − α1
, . . . ,

1

x − αg

,
y − y1

y(x − γ1)
, . . . ,

y − yg

y(x − γg)

}
.
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It is now possible to represent both (d/dx) ln En(px) and (d/dx) ln Ẽn(px) as a linear
combination of the elements of these respective basis sets, writing

d

dx
ln En = 1

y

g∑
j=0

cjx
j +

g∑
j=1

cg+j

x − αj

+
g∑

j=1

c2g+j
y + yj

y(x − γj )
(6.15)

and

d

dx
ln Ẽn = 1

y

g∑
j=0

c̃j x
j +

g∑
j=1

c̃g+j

x − αj

+
g∑

j=1

c̃2g+j
y − yj

y(x − γj )
, (6.16)

where the sets of coefficients {cj : j = 0, . . . , 3g} and {c̃j : j = 0, . . . , 3g} remain to be
determined.

Using the results (6.8)–(6.10) to equate leading coefficients from the expansions of the
right-hand sides of (6.15) and (6.16) around pαj

, pγj and p′
γj

,respectively, then gives

cg+j = c̃g+j = − 1
2 , j = 1, . . . , g

c2g+j = c̃2g+j = 1
2 , j = 1, . . . , g,

(6.17)

while equating leading coefficients for the expansions around ∞± gives

cg +
g∑

j=1

cg+j +
g∑

j=1

c2g+j = −n

c̃g +
g∑

j=1

c̃g+j +
g∑

j=1

c̃2g+j = n,

(6.18)

and thus −cg = c̃g = n.
In order to determine expressions for the other coefficients in (6.15) and (6.16) further

terms in the expansions of En and Ẽn are required. Allowing px → ∞−, since w(x) = O(x−1),
we have by virtue of (1.13) that

En(px) = 2Pn(x) + O(x−n). (6.19)

Hence we may write

En(px) = 2xn
n∑

j=0

pjx
−j + xn

∞∑
j=0

rj x
−2n−j = xn

∞∑
j=0

aj x
−j , (6.20)

where

aj :=




2pj for 0 � j � n

0 for n + 1 � j � 2n − 1

rj−2n for j � 2n.

(6.21)

Consequently we find that

E ′
n(x) = xn−1

∞∑
j=0

(n − j)aj x
−j .

We also require the expansion of y as px → ∞−:

y = −xg+1
∞∑
j=0

bj x
−j , (6.22)
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where the coefficients, bj , are easily determined. From (6.15), we note that

E ′
ny + Eny

1

2

g∑
j=1

(
1

x − αj

− 1

x − γj
− yj

y(x − γj )

)
= En

g∑
j=0

cjx
j .

Expanding around the point at ∞− throughout and multiplying the various series
representations together, we find that

−
g∑

j=0

(dj + fj )x
−j =

g∑
j=0

gj x
−j + O(x−1−g),

with

dj :=
i∑

k=0

(n + k − j)bjai−j

fj := 1
2

i∑
k=0

g∑
l=1

j−k∑
m=0

(αk
l − γ k

l )bmaj−k−m

gj :=
j∑

k=0

akcg−j+k.

(6.23)

Equating coefficients ofx−j , we obtain a sequence of equations from which we can, in principle,
iteratively determine the cj , from j = g to 0, in terms of {ak : k = 0, . . . , g − j} and
{bk : k = 0, . . . , g − j}, namely

−dj − fj = gj , j = 0, . . . , g. (6.24)

In particular, note that when g = 1, since c1 = −n, b0 = 1, b1 = −(α1 + β1)/2, a0 = 2 and
a1 = 2p1, it follows that, for n > 0,

c0 = p1 + n
α1 + β1

2
+
γ1 − α1

2
. (6.25)

It follows from (1.13) that, as px → ∞+,

Ẽn(px) = 2Pn(x) + O(x−n).

In this limit we also have

y = xg+1
∞∑
j=0

bj x
−j .

From (6.16), we find

Ẽ ′
ny + Ẽny

1

2

g∑
j=1

(
1

x − αj

− 1

x − γj
+

yj

y(x − γj )

)
= Ẽn

g∑
j=0

c̃j x
j ,

so that expanding this expression around the point at ∞+ and equating coefficients, it becomes
apparent in the light of the preceding calculations that c̃j = −cj for j = 0, . . . , g. Thus

d

dx
ln En = −nxg

y
+

g−1∑
j=0

cjx
j

y
− 1

2

g∑
j=1

1

x − αj

+
1

2

g∑
j=1

y + yj

y(x − γj )
(6.26)

and

d

dx
ln Ẽn = nxg

y
−

g−1∑
j=0

cjx
j

y
− 1

2

g∑
j=1

1

x − αj

+
1

2

g∑
j=1

y − yj

y(x − γj )
. (6.27)
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Introducing the function

�(x) :=
g∏

j=1

(x − αi),

it follows from the respective definitions (3.4) and (3.9) that

d

dx
ln En = �2P ′

n − (y ′Qn + yQ′
n)� + �′yQn

�(�Pn − yQn)
(6.28)

and

d

dx
ln Ẽn = �2P ′

n + (y ′Qn + yQ′
n)� − �′yQn

�(�Pn + yQn)
. (6.29)

Equating (6.26) with (6.28) and (6.27) with (6.29) provides

y(�2P ′
n − (y ′Qn + yQ′

n)� − �′yQn)

=
[
−nxg +

g−1∑
j=0

cjx
j − y

2

g∑
j=1

1

x − αj

+
1

2

g∑
j=1

y + yj

x − γj

]
�(�Pn − yQn) (6.30)

and

y(�2P ′
n + (y ′Qn + yQ′

n)� − �′yQn)

=
[
nxg −

g−1∑
j=0

cjx
j − y

2

g∑
j=1

1

x − αj

+
1

2

g∑
j=1

y − yj

x − γj

]
�(�Pn + yQn) (6.31)

The addition of (6.30) to (6.31) gives

P ′
n(x) = f1(x)Pn(x) + f2(x)Qn(x) (6.32)

with

f1(x) := 1

2

g∑
j=1

(
1

x − γj
− 1

x − αj

)
(6.33)

and

f2(x) :=
nxg −∑g−1

j=0 cjx
j − 1

2

∑g

j=1
yj

x−γj∏g

j=1(x − αj )
, (6.34)

and a subtraction of (6.30) from (6.31) yields

Q′
n(x) = f3(x)Pn(x) + f4(x)Qn(x) (6.35)

with

f3(x) :=
nxg −∑g−1

j=0 cjx
j − 1

2

∑g

j=1
yj

x−γj

(x2 − 1)
∏g

j=1(x − βj )
(6.36)

and

f4(x) := − x

x2 − 1
+

1

2

g∑
j=1

(
1

x − γj
− 1

x − βj

)
. (6.37)

Recalling

w(x) :=
√√√√ ∏g

j=1(x − αj )

(x2 − 1)
∏g

j=1(x − βj )
,
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we observe the following relations between the fj (x):

f3(x) = w2(x)f2(x) (6.38)

and

d

dx
ln w(x) = −1

2

d

dx

(
ln(x2 − 1) +

g∑
j=1

[ln(x − βj ) + ln(x − αj )]

)
= f4(x) − f1(x). (6.39)

Introducing Rn := Qn/w, (6.35) implies that

R′
n(x) = f3(x)

w(x)
Pn(x) +

(
f4(x) − w′(x)

w(x)

)
Rn(x).

This equation, rewritten using (6.38) and (6.39), together with the recast form of (6.32) then
gives the following coupled system of equations:

P ′
n(x) = f1(x)Pn(x) + f2(x)w(x)Rn(x)

R′
n(x) = f2(x)w(x)Pn(x) + f1(x)Rn(x).

(6.40)

The differential equations satisfied by Pn(x) and Rn(x) are simply obtained by elimination of
the other function from the system, the symmetry of which indicates that these equations must
be identical. Hence we find that Pn(x) and Rn(x) are the linearly independent solutions to

Y ′′(x) −
(

2f1 +
f ′

2

f2
+
w′

w

)
Y ′(x) +

(
f 2

1 − f ′
1 + f1

(
f ′

2

f2
+
w′

w

)
− f 2

2 w
2

)
Y (x) = 0 (6.41)

7. Alternative representations for Pn(x) and Qn(x)

The coupled system of differential equations given in (6.40) enables the determination of
alternative representations for both Pn(x) and Qn(x) for real values of x. As we shall see these
new identities have the advantageous property, when compared to the previous expressions of
section 5, that the oscillatory structure is explicitly apparent. It is this feature that allows us to
make further inferences regarding the location of the zeros of both polynomials.

By setting R̃n(x) := −iRn(x) and w̃(x) = iw(x) we rewrite (6.40) in a more convenient
way, obtaining

P ′
n(x) = f1(x)Pn(x) + f2(x)w̃(x)R̃n(x)

R̃′
n(x) = −f2(x)w̃(x)Pn(x) + f1(x)R̃n(x).

(7.1)

Using the Prüfer substitution [26], where

Pn(x) = ρn(x) cos θn(x)

R̃n(x) = ρn(x) sin θn(x),
(7.2)

the equations of (7.1) are decoupled, giving

(ln ρn(x))
′ = f1(x)

θ ′
n(x) = −f2(x)w̃(x).

(7.3)

Integrating the first equation along a smooth non-self-intersecting contour that lies entirely
in the upper half of the complex plane, between 1 and an arbitrary point z that satisfies the
condition Im z > 0, we obtain

ρn(z) = ρn(1)

√√√√ g∏
j=1

(z − γj )(1 − αj )

(z − αj )(1 − γj )
. (7.4)
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The second equation then gives

θn(z) − θn(1) =
∫ z

1

i
(∑g−1

j=0 cj t
j − ntg + 1

2

∑g

j=1
yj

t−γj

)
y

dt, (7.5)

where once again z is taken to be an arbitrary complex point with the property that Im z > 0
and the path of integration is a contour as above. For the purpose of our investigation we also
assume, without loss of generality, that the positive branch of y is selected (i.e. integration on
the Riemann surface of y is along a contour between 1 and pz that lies entirely in the upper
half of the +sheet).

From (7.2), observe that

ρ2
n(x) = P 2

n (x) + R̃2
n(x) = Pn(x)

2 − Q2
n(x)

w2(x)
(7.6)

and

tan θn(x) = R̃n(x)

Pn(x)
= Qn(x)

w̃(x)Pn(x)
. (7.7)

It then follows that

ρn(1) = ±Pn(1)

tan θn(1) = 0,
(7.8)

which then implies the following representations for Pn(z) and Qn(z) valid for Im z > 0:

Pn(z) = Pn(1)

√√√√ g∏
j=1

(z − γj )(1 − αj )

(z − αj )(1 − γj )
cos�n(z)

Qn(z) = i
Pn(1)√
z2 − 1

√√√√ g∏
j=1

(z − γj )(1 − αj )

(z − βj )(1 − γj )
sin �n(z),

(7.9)

where the function �n(z) is given by

�n(z) =
∫ z

1
θ ′
n(t) dt = i

∫ z

1

(∑g−1
j=0 cj t

j − ntg + 1
2

∑g

j=1
yj

t−γj

)
y

dt, (7.10)

the path of integration being as previously described. Notice that the sign of ρn(1) is selected
so that Pn(z) → Pn(1) as z → 1. Expressions for the polynomials for real values are then
obtained by the analytical continuation of those above, allowing z → x ∈ R. The reader
should note that it can be verified that these expressions fulfil the necessary criterion of being
analytic at the end points of the intervals that make up E. It should also be noted that, although
the formulae of (7.9) have the benefit of exposing the oscillatory behaviour of the polynomials,
they should not be seen as a replacement to the representations given in (5.21) and (5.22). This
is because, in order to make the expressions of (7.9) completely explicit as those results of
section 5 are, we require knowledge about the yj , j = 1, . . . , g, and this necessitates the
solution of the Jacobi inversion problem of (4.10).

We proceed by investigating the behaviour of the function �n(x) on the intervals that
make up Ē. From (7.7) it follows that, for j = 1, . . . , g,

tan θn(βj ) =
{

±∞ if Pn(βj ) = 0

0 otherwise
(7.11)
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Figure 4. The contour �j used in determining �n(x) when x ∈ (γj , βj ).

and

tan θn(αj ) =
{

0 if Qn(αj ) = 0

±∞ otherwise.
(7.12)

In the light of corollary 3.2, for a fixed n we can identify three distinct eventualities that must
be dealt with separately. Namely, these are the general case where γj ∈ (αj , βj ) and the
two singular cases where either Qn(αj ) = 0, so that γj = αj , or Pn(βj ) = 0, implying
that γj = βj . We deal with the general case first, discussing the behaviour of �n(x) on an
arbitrary interval (αj , βj ) for a fixed n such that γj ∈ (αj , βj ). In such instances the path of
integration in the expression for �n(x) can be continuously deformed so that it consists of two
sections, one joining the points 1 and αj and a second from αj to the point x ∈ (αj , βj ). Since
tan θn(αj ) = ±∞, we can certainly write

�n(x) = (lαj
− 1

2 )π +
∫ x

αj

θ ′
n(t) dt, (7.13)

where lαj
is an integer that depends upon n and the set E, while the path of integration joining

αj and x is smooth and non-self-intersecting, lying in the upper half of the complex plane so
that, if x > γj , it passes above γj . When x ∈ (αj , γj ) this contour may be deformed so that it
lies along the real axis. However, when x ∈ (γj , βj ) we deform the path onto the contour �j ,
illustrated in figure 4. By allowing ε → 0 in this contour, only the pole at γj in the integrand
of �n(x) contributes to the integral over the semi-circular arc of �j . Consequently we find the
following result for �n(x):

�n(x) =




(lαj
− 1

2 )π +
∫ x

αj

θ ′
n(t) dt for x ∈ (αj , γj )

(lαj
− 1

2 )π ± π

2
+ P

∫ x

αj

θ ′
n(t) dt for x ∈ (γj , βj ),

(7.14)

where in the second case the P indicates that the integral is considered in the principal value
sense and the plus sign is selected if pγj lies on the +sheet of R, the minus sign if it lies on the
−sheet. The reader should note that this last result may be used to verify that the expressions
for the polynomials are analytic at γj .

We now consider the behaviour of �n(x) on the general interval (αj , βj ), for n such that
γj = αj . Since it follows from corollary 3.2 that Pn(βj ) �= 0, by (7.11) tan θn(βj ) = 0.
Hence, by deforming the integration contour of �n(x), so that it consists of an arc in the upper
half of the complex plane from 1 and βj , and a section along the real axis from βj to the point
x, we may write

�n(x) = lβj
π +

∫ x

βj

θ ′
n(t) dt, x ∈ (αj , βj ), (7.15)

where lβj
∈ Z depends upon n and the set E.
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Finally, if γj = βj for a particular n, it follows from corollary 3.2 that Qn(αj ) �= 0.
From (7.12), we then find that tan θn(αj ) = ±∞. Thus deforming the integration path of
�n(x), so that it has a section lying on the real axis between αj and x ∈ (αj , βj ), gives

�n(x) = (lαj
− 1

2 )π +
∫ x

αj

θ ′
n(t) dt, x ∈ (αj , βj ), (7.16)

where lαi
∈ Z. Note that, since lαi

depends upon n, in general we would expect it to take a
different value here to that in (7.13).

Having considered all the possible types of behaviour of �n(x) for x ∈ Ē, we are in a
position to prove the following theorem regarding the zeros of Pn(x) and Qn(x) in this open
set:

Theorem 7.1. The interval (αj , βj ), j = 1, . . . , g, contains at most one zero of each of the
polynomials Pn(x) and Qn(x). Further to this, if we consider a particular interval (αj , βj ), in
cases where n is such that γj ∈ (αj , βj ), any zero of Pn(x) on this interval must lie in (αj , γj )

and any zero of Qn(x) is contained in (γj , βj ). If n is such that γj = αj or γj = βj , then both
Pn(x) and Qn(x) have no zeros on the interval.

Proof. Taking the general interval (αj , βj ) we notice that, at all points on this interval, θ ′
n has

the property that Re{θ ′
n} = 0, regardless ofn. Considering the general case where γj ∈ (αj , βj )

it then follows from (7.14) that

| cos�n(x)| =




sinh

(
Im

[∫ x

αj

θ ′
n(t) dt

]) for x ∈ (αj , γj )

cosh

(
Im

[
P

∫ x

αj

θ ′
n(t) dt

])
for x ∈ (γj , βj ),

whilst

| sin �n(x)| =




cosh

(
Im

[∫ x

αj

θ ′
n(t) dt

])
for x ∈ (αj , γj )sinh

(
Im

[
P

∫ x

αj

θ ′
n(t) dt

]) for x ∈ (γj , βj ).

From corollary 3.3, note that Pn(γj ) �= 0 and Qn(γj ) �= 0, so that if Pn(x) has zeros on
(αj , βj ) they must lie on the interval (αj , γj ) and any zeros of Qn(x) lying on (αj , βj ) must
be contained in (γj , βj ). Suppose then that Pn(x) has two or more zeros on (αj , γj ). Since
Qn(x) has a zero between any two consecutive zeros of Pn(x) by theorem 1.3, it follows that
Qn(x) must have a zero on (αj , γj ), a contradiction that forces us to conclude that Pn(x) has
at most one zero on this interval. Similar arguments show that Qn(x) has at most one zero on
the interval (γj , βj ).

If Qn(αj ) = 0 for a particular n, so that γj = αj , then from (7.15) we deduce that

| cos�n(x)| = cosh

(
Im

[∫ x

βj

θ ′
n(t) dt

])
, x ∈ (αj , βj ).

This implies that Pn(x) �= 0 when x ∈ (αj , βj ). Since Qn(αj ) = 0, to prevent contradicting
theorem 1.3, we must conclude that Qn(x) has no zeros on (αj , βj ) also.

In cases where n is such that Pn(βj ) = 0 and thus γj = βj , it follows from (7.16) that

| sin �n(x)| = cosh

(
Im

[∫ x

βj

θ ′
n(t) dt

])
, x ∈ (αj , βj ),

implying that Qn(x) �= 0 for x ∈ (αj , βj ). Because Pn(βj ) = 0, theorem 1.3 demands that
Pn(x) �= 0 on this interval too. �
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8. Explicit consideration of the elliptic problem

The elliptic problem refers to the case where E = [−1, α] ∪ [β, 1] and the Riemann surface
we work on is that which is defined by the curve y2 = (x2 − 1)(x − α)(x − β). For an
account of Akhiezer’s work on this problem we refer the reader to [4, ch 10]. The genus 1 case
merits explicit study since it is the simplest possible generalization of the classical one-interval
problem and this transparency permits an easier contrast between the different behaviours than
consideration of the general genus g.

Before progressing we draw attention to an alteration in the notation. For g = 1 the
Riemann theta function of previous sections is a function of a single variable, and throughout
this section we identify ϑ(u) with ϑ3(u) in accordance with the notation of Jacobi. It is also
convenient to introduce here three other Jacobian theta functions:

ϑ1(u) := 2
∞∑
j=0

(−1)j q(j+ 1
2 )

2
sin(2j + 1)πu

ϑ2(u) := 2
∞∑
j=0

q(j+ 1
2 )

2
cos(2j + 1)πu

ϑ3(u) := 1 + 2
∞∑
j=1

qj 2
cos 2jπu

ϑ4(u) := 1 + 2
∞∑
j=1

(−1)j qj 2
cos 2jπu,

(8.1)

where the quantity q := exp[iπτ ], with τ the single element of the B period matrix. An
excellent review on the properties of these functions can be found in [28, ch 9].

The polynomials. In the genus 1 case various quantities can be given in terms of elliptic
integrals. The following integrals are commonly defined (see, for instance, [12]):

Ajk := A = 2
∫ pα

pβ

dx

y
= 4K√

(1 − α)(1 + β)
, (8.2)

where the integration is performed along a path in the +sheet of R that projects onto a section
of the real axis [β, α]. K(k) is a complete elliptic integral of the first kind, with the modulus
k given by

k :=
√

2(β − α)

(1 − α)(1 + β)
. (8.3)

The elements of the B period matrix are given by

Bjk := τ = 2

A

∫ pα

p−1

dx

y
= i

K ′

K
, (8.4)

where the integration is along the upper edge of the branch cut in the +sheet of R. The function
K ′ := K(k′) is a complete elliptic integral of the first kind with a modulus k′ complementary
to k:

k′ :=
√

1 − k2 =
√

(1 − β)(1 + α)

(1 − α)(1 + β)
. (8.5)

As A is real it follows that u± = u± ∈ R. Also by considering the function x − 1 on R, using
Abel’s theorem we find that u+ +u− ≡ 0 (modulo the periods). Together these facts imply that



4676 Y Chen and N Lawrence

u− = u− = 1 − u+, where u+ is the value of the Abelian integral in the fundamental period
parallelogram:

u+ = 1

A

∫ ∞+

p1

dx

y
= 1

2

F(φ, k)

K
, (8.6)

where the integration is along a path in the +sheet of R, that projects onto the section [1,∞]
and

φ = arcsin

√
β + 1

2
. (8.7)

We also have

uα = uα = 1

A

∫ pα

p1

dx

y
= τ

2
+

1

2
(8.8)

and from (4.10) and (4.12)

uγ = uγ = τ

2
+

{
1

2
− 2nu+

}

u′
γ = u′

γ = τ

2
+

{
1

2
+ 2nu+

}
,

(8.9)

where {x} denotes the fractional part of the real number x.
Using (4.9) and (4.12) these results allow us to write

En(px) = δn
ϑn

3 (ux − u+ − 1+τ
2 )ϑ3(ux + 2nu+ − τ)

ϑn
3 (ux + u+ − 1+τ

2 )ϑ3(ux − τ)

Ẽn(px) = δ̃n
ϑn

3 (ux + u+ − 1+τ
2 )ϑ3(ux − 2nu+ − τ)

ϑn
3 (ux − u+ − 1+τ

2 )ϑ3(ux − τ)
,

with δn and δ̃n constants independent of x that need to be determined. It should be noted
that these expressions En and Ẽn are equivalent to the genus 1 form of (4.19) and have been
adopted purely because they implicitly contain a theta function expression for the integral
�(px). Observing the following relations involving ϑ1 and ϑ3:

ϑ3

(
u − 1 + τ

2

)
= −ieiπ(u− τ

4 )ϑ1(u)

ϑ3(u − τ) = eiπ(2u−τ)ϑ3(u),

(8.10)

the expressions for En and Ẽn may be simplified, giving

En(px) = δnei2πnu+ ϑn
1 (ux − u+)ϑ3(ux + 2nu+)

ϑn
1 (ux + u+)ϑ3(ux)

Ẽn(px) = δ̃ne−i2πnu+ ϑn
1 (ux + u+)ϑ3(ux − 2nu+)

ϑn
1 (ux − u+)ϑ3(ux)

.

(8.11)

By demanding that En(p
′
x) = Ẽn(px), using the symmetry properties of the theta function,

we uncover a relationship between δn and δ̃n, namely that

δ̃n = δn exp[i4nπu+]. (8.12)

An expression for δn follows from the fact that for n � 1 as px → ∞−, En(px) � 2xn and
E0 = 1, using (5.9) we find

δn =



1 for n = 0

2

[ −ϑ ′
1(0)

Aei2πu+
ϑ1(2u+)

]n
ϑ3(u+)

ϑ3((2n − 1)u+)
for n � 1,

(8.13)



Generalized Chebyshev polynomials 4677

-1 -0.5 0.5 1

-5 ×10-10

5 ×10-10

1 ×10-9

1.5 ×10-9

Figure 5. The genus 1 polynomial P30(x) for α = 0 and β = 0.6.

from which δ̃n also follows by (8.12).
Combining the results given above allows us to write the following expressions for the

polynomials: for n � 1,

Pn(x) = 1
2 (En(px) + Ẽn(px)) =

[
− ϑ ′

1(0)

Aϑ1(2u+)

]n
ϑ3(u+)

ϑ3((2n − 1)u+)

×
(
ϑn

1 (ux + u+)ϑ3(ux − 2nu+)

ϑn
1 (ux − u+)ϑ3(ux)

+
ϑn

1 (ux − u+)ϑ3(ux + 2nu+)

ϑn
1 (ux + u+)ϑ3(ux)

)
(8.14)

and

Qn(x) = w(x)

2
(Ẽn(px) − En(px))

=
[
− ϑ ′

1(0)

Aϑ1(2u+)

]n
ϑ3(u+)

ϑ3((2n − 1)u+)

√
x − α

(x2 − 1)(x − β)

×
(
ϑn

1 (ux + u+)ϑ3(ux − 2nu+)

ϑn
1 (ux − u+)ϑ3(ux)

− ϑn
1 (ux − u+)ϑ3(ux + 2nu+)

ϑn
1 (ux + u+)ϑ3(ux)

)
(8.15)

In figures 5 and 6, respectively, P30(x) and Q30(x) are plotted for the case where α = 0
and β = 0.6. Comparing the two plots, observe that between any two zeros of P30(x) lies a
zero of Q30(x), as required by theorem 1.3. Further notice that in these cases the zeros are
confined to (−1, α) and (β, 1).

In figure 7, we plot P5(x) and Q5(x), for α = −0.1 and β = 0.3. Both polynomials
have a single zero on the interval Ē = (−0.1, 0.3). Numerically evaluating γ (5), using the
expression for γ (n) derived later in this section, we find that γ (5) = 0.206 244 (to 6 decimal
places). In accordance with theorem 7.2, it can then be clearly seen that the zero of P5(x) lies
in (−0.1, γ (5)) and that of Q5(x) is contained in (γ (5), 0.3).

Some other important quantities. We proceed by deriving explicit representations for various
other important quantities required for a complete characterization of the genus 1 problem.
We start with the theta function representations for the recurrence coefficients of relation (1.1).
Using the fact that, as px → ∞+, En(px) � hn

xn , it is easily shown that

hn = δn

[−ei2πu+
ϑ ′

1(0)

Aϑ1(2u+)

]n
ϑ3((2n + 1)u+)

ϑ3(u+)
.
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Figure 6. The genus 1 polynomial Q30(x) for α = 0 and β = 0.6.
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Figure 7. A plot of the polynomials, P5(x) and Q5(x) for the case where α = −0.1 and β = 0.3,
illustrating the position of their respective zeros on the interval Ē = (−0.1, 0.3).

From (8.13) it follows that

hn =



1 for n = 0

2

[
ϑ ′

1(0)

Aϑ1(2u+)

]2n
ϑ3((2n + 1)u+)

ϑ3((2n − 1)u+)
for n > 0.

(8.16)

We recall that from the recurrence relation (1.1) and the orthogonality relation of (1.4) it can
be shown that anhn−1 = hn and hence we find

an =




2

[
ϑ ′

1(0)

Aϑ1(2u+)

]2
ϑ3(3u+)

ϑ3(u+)
for n = 1;

[
ϑ ′

1(0)

Aϑ1(2u+)

]2
ϑ3((2n + 1)u+)ϑ3((2n − 3)u+)

ϑ2
3 ((2n − 1)u+)

for n � 2.

(8.17)

The Hankel determinant, given by
∏n

j=1 hj , is

det Hn = 2n

[
ϑ ′

1(0)

Aϑ1(2u+)

]n(n+1)
ϑ3((2n + 1)u+)

ϑ3(u+)
, (8.18)
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where

Hn = [µj+k]j,k=0,1,...,n, (8.19)

with µj , the j th moment of the genus 1 weight function.
Setting g = 1, it then follows from (5.17), using the results of (4.21), (8.8) and (8.10) that

p1(n) = 1

A

ϑ ′
3((2n − 1)u+)

ϑ3((2n − 1)u+)
− (2n − 1)

A

ϑ ′
3(u

+)

ϑ3(u+)
− n(β − α)

2
. (8.20)

It is worth noting at this stage that we have now shown that

P1(x) = x +
α − β

2
.

When α > 0 selecting β > 3α and for α < 0 choosing β > −α, we ensure that

α <
β − α

2
< β.

Hence we have demonstrated analytically the existence of cases where the polynomials have
zeros on the interval Ē. We can now determine an expression for the other recurrence
coefficient bn. Again we use the fact that bn = p1(n − 1) − p1(n):

bn = β − α

2
+

1

A

[
2
ϑ ′

3(u
+)

ϑ3(u+)
+
ϑ ′

3((2n − 3)u+)

ϑ3((2n − 3)u+)
− ϑ ′

3((2n − 1)u+)

ϑ3((2n − 1)u+)

]
, n � 1. (8.21)

We proceed with the determination of γ (n). Previously in deriving an expression for the
cj , j = 0, . . . , g, we noticed that, as px → ∞−,

En(px) = 2Pn(x) + O(x−n). (8.22)

We had shown from (6.26) that

yE ′
n(x) − En(px)

[ g∑
j=0

cjx
j +

y

2

g∑
j=1

(
1

x − γj
− 1

z − αj

)
+

1

2

g∑
j=1

yj

x − γj

]
= 0, (8.23)

for all x. Expanding the left-hand side around the point at ∞−, using (8.22) and setting
the first g coefficients equal to zero, we then obtained relationships for the cj in terms of
{pk, γk, αk, βk : k = 1, . . . , g}. In the particular case where g = 1, we found that, for n > 0,
c1(n) = −n and

c0(n) = p1(n) + n
α + β

2
+
γ (n) − α

2
. (8.24)

We shall now use the same principle but this time we expand around the point at ∞+. In
so doing we obtain a second relationship between c0(n) and γ (n). Eliminating c0(n) between
this and the equation above will provide the expression for γ (n) that we seek. Firstly, we
require the asymptotic expansion of En(px) as px → ∞+. From (1.13) it follows that in this
limit

En(px) = 1

w(x)

[
1

xn+1

∫
E

Pn(t)t
np(t) dt +

1

xn+2

∫
E

Pn(t)t
n+1p(t) dt + O(x−n−3)

]
. (8.25)

Observe that we can always write

tn =
n∑

j=0

λj (n)Pn−j (t), (8.26)
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Figure 8. The values of γ (n) as n varies from 1 to 100, when α = 0 and β = 0.6.

where it is easily shown that λ0(n) = 1 and λ1(n) = −p1(n). It then follows from the
orthogonality relationship that∫

E

Pn(t)t
np(t) dt = hn

∫
E

Pn(t)t
n+1p(t) dt = λ1(n + 1)hn.

In the case where g = 1, as x → ∞+ we have

1

w(x)
= x +

α − β

2
+ O(x−1),

so that ultimately in this limit we obtain

En(px) = hn

xn
+

hn

xn+1

(
α − β

2
+ λ1(n + 1)

)
+ O(x−n−2). (8.27)

We then expand the left-hand member of (8.23), with g = 1, around the point at ∞+ and
set the coefficients in this expansion to zero. The coefficient of x−n+1 verifies the fact that
c1(n) = −n, while that of x−n gives the relation

c0(n) = n
α + β

2
+
β − γ (n)

2
− λ1(n + 1). (8.28)

Subtracting (8.24) from this expression we find that

γ (n) = p1(n + 1) − p1(n) +
β + α

2
.

Then, since bn = p1(n − 1) − p1(n), it follows that

γ (n) = β + α

2
− bn+1 = α +

1

A

[
ϑ ′

3((2n + 1)u+)

ϑ3((2n + 1)u+)
− ϑ ′

3((2n − 1)u+)

ϑ3((2n − 1)u+)
− 2

ϑ ′
3(u

+)

ϑ3(u+)

]
, (8.29)

by virtue of (8.21). In figures 8 and 9 we plot the values that γ (n) takes as n varies for two
specific choices of the interval E. Note that in both cases γ (n) ∈ [α, β] for all values of n, as
required by theorem 3.1.
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Figure 9. The values of γ (n) as n varies from 1 to 100, when α = −0.1 and β = 0.2.

A convenient expression for c0(n). We take this opportunity to determine another expression
for c0(n) that will prove of great use later. Previously we have obtained representations by
essentially expanding different expressions for (d/dx) ln En around the point at ∞− and ∞+

and then equating. Again we adopt a similar approach, this time expanding for px around 1 in
terms of the local coordinate ξ = √

x − 1. Note that in this locality it follows straightforwardly
from the definition for ux that

ux =
√

2

A
√
(1 − β)(1 − α)

ξ + O(ξ 3). (8.30)

From the expression for En given in (8.11) we have

ln En(px) = ln(δnei2πnu+
) + n[ln ϑ1(ux − u+) − ln ϑ1(ux + u+)]

+ ln ϑ3(ux + 2nu+) − ln ϑ3(ux).

Hence by using (5.9) and (8.30) it is easily shown that

d

dx
ln En(px) =

ϑ ′
3(2nu+)

ϑ3(2nu+)
− 2nϑ ′

1(u
+)

ϑ1(u+)

A
√

2(1 − β)(1 − α)

1

ξ
+ O(1). (8.31)

On the other hand, expanding the g = 1 form of (6.26) in terms of ξ , we find

d

dx
ln En(px) =

c0 − n + y1

2(1−γ )√
2(1 − β)(1 − α)

1

ξ
+ O(1). (8.32)

By equating the last two local expressions we determine the following representation for c0(n):

c0 = n − y1

2(1 − γ )
+

1

A

(
ϑ ′

3(2nu+)

ϑ3(2nu+)
− 2n

ϑ ′
1(u

+)

ϑ1(u+)

)
. (8.33)

It is easily shown using results in [28, ch 9] that ϑ ′
3(u)/ϑ3(u) is a bounded function for all real

values of u and that ϑ ′
1(u)/ϑ1(u) has its only real valued singularities at u ∈ Z. Thus, since

γ ∈ [α, β] for all values of n and u+ /∈ Z, we have shown that c0(n) has the general form
c0(n) = nκ1 + κ2(n), where κ1 is finite and constant for a fixed n and κ2(n) is bounded for all
values of n. Notice in particular that

lim
n→∞

c0(n)

n
= 1 − 2

A

ϑ ′
1(u

+)

ϑ1(u+)
. (8.34)
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Contraction to one interval. We continue by demonstrating that allowing α → β, so that
E becomes a single interval, leads to the recovery of well known results for the Chebyshev
polynomials. Firstly let us examine the differential equation satisfied by Pn(x) and Rn(x):

Y ′′(x) + s(x)Y ′(x) + t (x)Y (x) = 0,

where

s(x) := −
(

2f1 +
f ′

2

f2
+
w′

w

)

t (x) := f 2
1 − f ′

1 + f1

(
f ′

2

f2
+
w′

w

)
− f 2

2 w
2,

(8.35)

with

f1(x) = 1

2

(
1

x − γ
− 1

x − α

)

f2(x) = 1

x − α

(
nx − c0 − y1

2(x − γ )

)

w(x) =
√

x − α

(x2 − 1)(x − β)
.

Note that in the case where we setα = β = γ (n), thus reducing the problem to a single interval,
since the weight function is then symmetrical on [−1, 1], it follows from the orthogonality
relationship (1.4) that p1(n) = 0 for all values of n. Consequently, using (8.24), we find that
c0(n) = nα, n � 0. Thus f1 = 0, f2 = n and w = 1/

√
x2 − 1 and we recover the classical

equation satisfied by the Chebyshev polynomials of the first kind, Tn(x):

(x2 − 1)Y ′′(x) + xY ′
n(x) − n2Y (x) = 0.

In order to determine the nature of Pn(x) and Qn(x) as α → β, we must first understand
the behaviour of the fundamental quantities A, τ and u+ in this limit. Setting β = α + δ and
allowing δ → 0, it follows from (8.2) that

A = 2π√
1 − α2

+ O(δ), (8.36)

and (8.4) leads to

τ = − i

π
ln δ +

i

π
ln[8(1 − α2)] + O(δ). (8.37)

In the limit δ → 0, we also have

u+ = 1

π
arcsin

√
α + 1

2
+ O(δ). (8.38)

From the definition for ϑ1(u) given in (8.1) it follows that

ϑ ′
1(0) = 2π

[8(1 − α2)]1/4
δ1/4 + O(δ5/4)

ϑ1(2u+) = 2 sin 2πu+

[8(1 − α2)]1/4
δ1/4 + O(δ5/4).

Thus recalling (8.14), we have determined that

�(n) = (−1)n2−n + O(δ). (8.39)
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When β = α + δ,

ux = 1

A

(∫ x

1

dx

(x − α)
√
(x2 − 1)

+ O(δ)

)
.

integration then gives

ux = 1

π
arcsin

√
(α + 1)(x − 1)

2(x − α)
+ O(δ). (8.40)

From the theta function definitions of (8.1) it follows from (8.14) that

g1(x; n) =
[

sin π(ux + u+)

sin π(ux − u+)

]n
+ O(δ) (8.41)

and

g2(x; n) =
[

sin π(ux − u+)

sin π(ux + u+)

]n
+ O(δ). (8.42)

Using (8.38) and (8.40), after some elementary trigonometric manipulations,

g1(x; n) = (−1)n
(√

1 + x − i
√

1 − x√
1 + x + i

√
1 − x

)n

+ O(δ) = (−1)n(x − i
√

1 − x2)n + O(δ) (8.43)

and hence

g2(x; n) = (−1)n
(
x − i

√
1 − x2

)−n
+ O(δ). (8.44)

Setting x = cos z implies that

g1(cos z; n) + g2(cos z; n) = (−1)n[e−inz + einz] + O(δ),

and thus

lim
α→β

Pn(cos z) = 21−n cos nz; n � 1. (8.45)

Similarly we find that

lim
α→β

Qn(cos z) = 21−n sin nz

sin z
. (8.46)

Both of these expressions are in agreement with the results for the Chebyshev polynomials of
the first and second kinds, respectively [23].

9. Determination of the {γi} in higher genus cases

The importance of the points {pγj : j = 1, . . . , g} is apparent from the preceding sections.
Originating from the consideration of the divisor for Akhiezer’s function

En(px) = Pn(x) − Qn(x)

w(x)

on the Riemann surface R, they are required in order to completely quantify the differential
equations satisfied by the polynomials Pn and Qn, and indeed any quantity that has a
dependence on yj , j = 1, . . . , g. The pγj represent the solution to the Jacobi inversion
problem of equation (4.10) and as such are the zeros of the Riemann theta function of g

variables:

ϑ

(
ux − C −

g∑
j=1

uαj
− n(u− − u+)

)
.

In general this result is not easy to work with.
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In an effort to advance our understanding of these points, in this section we explicitly
consider the determination of {γj : j = 1, . . . , g}, their projection on the complex plane,
for the case where g = 2. By taking different representations of the asymptotic expansion
of d

dx ln En(px) around the points at ∞− and ∞+, matching coefficients we generalize the
technique used in the genus 1 case and obtain a quadratic equation satisfied by γ1 and γ2. As
the reader will see this technique can, in principle, be extended, so that in the general genus g
case, a polynomial of degree g satisfied by the {γj : j = 1, . . . , g} is found.

The case where we expand around the point at ∞− has been considered previously, when
we derived expressions for the cj in terms of {γk, αk, βk : k = j, . . . , g} in section 6. When
g = 2, we find the following expressions:

c2 = −n

c1 = p1(n) − nb1 +
γ1(n) − α1 + γ2(n) − α2

2

c0 − b1c1 = 2p2(n) − p2
1(n) + n(b2

1 − b2) +
γ 2

1 (n) − α2
1 + γ 2

2 (n) − α2
2

2
,

(9.1)

where the bj are defined as in (6.22). As g = 2 in the case under consideration we may write,
as px → ∞−, that

y = −x3 − b1x
2 − b2x + O(1), (9.2)

with

b1 = −α1 + β1 + α2 + β2

2

b2 = 2[α1(α2 + β1 + β2) + α2(β1 + β2) + β1β2] − (α2
1 + β2

1 + α2
2 + β2

2 )

8
− 1

2
.

(9.3)

Considering the expansion of En(px) as px → ∞+, from (1.13) we find that

En(px) = 1

w(x)

[∫
E
Pn(t)t

np(t) dt

xn+1
+

∫
E
Pn(t)t

n+1p(t) dt

xn+2

+

∫
E
Pn(t)t

n+2p(t) dt

xn+3
+ O(x−n−4)

]
.

Writing, as we did in section 8,

tn =
n∑

j=0

λj (n)Pn−j (t), (9.4)

it is easily shown that λ0(n) = 1, λ1(n) = −p1(n) and λ2(n) = p1(n)p1(n − 1) − p2(n). It
then follows from the orthogonality relationship satisfied by Pn(x) that

En(px) = hn

w(x)

[
1

xn+1
+
λ1(n + 1)

xn+2
+
λ2(n + 2)

xn+3
+ O(x−n−4)

]
. (9.5)

We proceed by observing that in this case

ln w(x) = 1
2 [ln(x − α1) + ln(x − α2) − ln(x − β1) − ln(x − β2) − ln((x2 − 1)].

It then follows that, as px → ∞+,

d

dx
ln

1

w(x)
= 1

x
+
β1 − α1 + β2 − α2

2x2
+

1

x3

(
1 +

β2
1 − α2

1 + β2
2 − α2

2

2

)
+ O(x−4).
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Combining this result with that of (9.5), we find the following asymptotic expansion:

d

dx
ln En(px) = −n

x
+

1

x2

(
β1 − α1 + β2 − α2

2
− λ1(n + 1)

)

+
1

x3

(
1 +

β2
1 − α2

1 + β2
2 − α2

2

2
+ λ2

1(n + 1) − 2λ2(n + 2)

)
+ O(x−4). (9.6)

Recall from (6.26) that for all values of x, in the case where g = 2,

y
d

dx
ln En(px) = c0 + c1x + c2x

2 +
y

2

2∑
i=1

(
1

x − γi
− 1

x − αi

)
+

1

2

2∑
i=1

yi

x − γi
.

Expanding each side of this identity around the point at ∞+ using (9.6), and equating the
coefficients, provides the following expressions:

c1 = −λ1(n + 1) − nb1 +
β1 − γ1(n) + β2 − γ2(n)

2

c0 − b1c1 = λ2
1(n + 1) − 2λ2(n + 2) + n(b2

1 − b2) + 1 +
β2

1 − γ 2
1 (n) + β2

2 − γ 2
2 (n)

2
.

(9.7)

From equations (9.1) and (9.7) it follows that

γ1(n) + γ2(n) = F(n)

γ 2
1 (n) + γ 2

2 (n) = G(n)
(9.8)

where

F(n) := p1(n + 1) − p1(n) +
α1 + β1 + α2 + β2

2
G(n) := 1 + p2

1(n + 1) + p2
1(n) − 2[p1(n + 2)p1(n + 1) − p2(n + 2) + p2(n)]

+
α2

1 + β2
1 + α2

2 + β2
2

2
,

(9.9)

having used the previous expressions for λ1 and λ2 in terms of p1 and p2. It is then easily
shown that γ1(n) and γ2(n) are the solutions of

x2 − F(n)x +
F 2(n) − G(n)

2
= 0. (9.10)

Since the pj can be expressed in terms of the recurrence coefficients of relation (1.1), we have
thus demonstrated how to find expressions for γ1 and γ2 in terms of the {aj } and {bj }.

10. Large n asymptotics

An object which will play an important role in the following development is kn(x, x), the
Christoffel–Darboux kernel evaluated at the same point. For our purposes, we introduce

σn(x) := p(x)kn(x, x) = p(x)

hn−1
(P ′

n(x)Pn−1(x) − Pn(x)P
′
n−1(x)). (10.1)

In the case of the Chebyshev polynomials, wherep(x) = 1/
√

1 − x2, Tn(cos θ) = 21−n cos nθ
and hn = π21−2n,

σn(x) = 1

π(1 − x2)
[n cos[(n − 1) arccos x] sin[n arccos x]

− (n − 1) cos[n arccos x] sin[(n − 1) arccos x]].
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Figure 10. σn(x)/n for the genus 1 polynomial Pn, where α = −0.1 and β = 0.2, and Tn, the
Chebyshev polynomial of the first kind. In both cases n = 20.

Observe that this may be written as

σn(x) = n
√

1 − x2 + sin[(n − 1) arccos x] cos[n arccos x]

π(1 − x2)
. (10.2)

from which it follows that

lim
n→∞

σn(x)

n
= 1

π
√

1 − x2
, −1 < x < 1. (10.3)

Observe that in the context of the material that follows, the right-hand side of (10.3) can be
identified as the equilibrium density of the interval [−1, 1].

In order to determine a corresponding expression for the generalized Chebyshev
polynomials, we recall that (6.32) states

P ′
n(x) = f1(x; n)Pn(x) + f2(x; n)Qn(x),

with

f1(x; n) := 1

2

g∑
j=1

(
1

x − γj (n)
− 1

x − αj

)

f2(x; n) :=
nxg −∑g−1

j=0 cj (n)x
j − 1

2

∑g

j=1
yj

x−γj (n)∏g

j=1(x − αj )
.

(10.4)

We can use this to write

σn(x) = p(x)

hn−1

[
Pn(x)Pn−1(x)(f1(x; n) − f1(x; n − 1))

+ f2(x; n)Qn(x)Pn−1(x) − f2(x; n − 1)Pn(x)Qn−1

]
. (10.5)

σn/n for Pn in the genus 1 case, where α = −0.1, β = 0.2 and n = 20 is illustrated in
figure 10. It is contrasted with σn(x)/n of the Chebyshev polynomials of the first kind, also
plotted for n = 20. Observe the similarity near the edges (i.e. near to ±1) and the contrast
between the behaviour at α and the other end points for the generalized polynomial, which is
dictated by the weight function factor.
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An electrostatic problem. Let σ be a positive charge density defined on the set E =
[−1, α1] ∪g−1

j=1 [βj , αj ] ∪ [βg, 1], satisfying the condition that∫
E

σ(x) dx = 1. (10.6)

We consider the energy functional

I [σ ] = −
∫
E

∫
E

ln |x − t |σ(x)σ (t) dx dt. (10.7)

The equilibrium density of the set E [27, p55], denoted by σ ∗, is obtained by minimizing
the energy functional subject to the normalization constraint. Thus, by taking the functional
derivative of (10.7), σ ∗ satisfies the following integral equation:

V = −P

∫
E

ln |x − t |σ ∗(t) dt. (10.8)

The Lagrange multiplier V is known as the conductor potential of the set E, and is a constant
for x ∈ E. Differentiating (10.8) with respect to x, σ ∗ then satisfies

P

∫
E

σ ∗(z)
x − t

dt = 0, x ∈ E. (10.9)

The general solution to this equation is then found to be [11]

σ ∗(x) = Ug(x)

y
, x ∈ E, (10.10)

with y =
√
(x2 − 1)

∏g

j=1(x − αi)(x − βi) and Ug an arbitrary polynomial of degree g.

Note that without loss of generality we assume that y takes values that are consistent with
approaching E from above on the +sheet of R. The requirement that σ ∗(x) be real and
positive for all x ∈ E demands that the zeros of Ug lie one a piece in each of the intervals that
make up Ē(:= [−1, 1]\E). Quantitatively, the g + 1 coefficients of Ug are determined by the
fact that

∫
E
σ ∗(x)dx = 1 and the Akhiezer–Widom condition [3,30, section 13], which states∫ βi

αi

σ ∗(x) dx = 0, i = 1, . . . , g, (10.11)

where, for x ∈ Ē, σ ∗(x) is taken to be the extension of the function given in (10.10). These
conditions are required to ensure that the conductor potential V is the same constant on each
sub-interval and can easily be demonstrated as follows. We introduce the function [16, 30,
section 13]

ϒ(x) = Re

(
−
∫
E

σ ∗(t) ln(x − t) dt

)
, x ∈ C.

When x ∈ E we see that this function is, in fact, a constant equal toV , so that (d/dx)ϒ(x) = 0.
However, when x ∈ Ē we find that

d

dx
ϒ(x) =

∫
E

σ ∗(t)
t − x

dt = iπσ ∗(x),

where the integral above is evaluated in exactly the same way as w(x) was determined in (2.2).
In light of this last fact we find that, in order for V to be the same constant on each of the
intervals making up E, we require that ϒ(βi) − ϒ(αi) = 0, i = 1, . . . , g, and consequently
this implies the conditions of (10.11).
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Notice that from the normalization condition it is easily shown that

Ug(x) = i

π

(
xg +

g−1∑
j=0

kjx
j

)
, (10.12)

where the coefficients, kj , follow from (10.11). Hence, referring to (4.14) and (4.16) we have
identified that the Akhiezer–Widom conditions are equivalent to the conventional normalization
of �. Indeed we have shown that

σ ∗(x) = i

π

d�

dx
. (10.13)

Returning to consider the g = 1 case explicitly, the equilibrium density is given by

σ ∗(x) = i(x + k0)

π
√
(x2 − 1)(x − α)(x − β)

, x ∈ E. (10.14)

where

k0 = −
∫ β

α
x dx
y∫ β

α
dx
y

. (10.15)

These integrals can be written in terms of the standard elliptic integral functions [12]

k0 := (1 − β)�
(
β−α

1−α
, k
)

K(k)
− 1, (10.16)

with �(m, k) a complete elliptic integral of the third kind and k defined as in (8.3). We now
take the opportunity to recast k0 into a form that will prove convenient later. In order to
make comparisons with the preceding results we will require a representation in terms of theta
functions.

In cases where 0 < m < k2 the elliptic integral of the third kind,

�(ψ,m, k) :=
∫ sin ψ

0

dt

(1 − mt2)
√
(1 − t2)(1 − k2t2)

,

can be written as [28, ch 10]

�(ψ,m, k) = − snr

cnrdnr

[
1

2
ln

ϑ4
(
u+r
2K

)
ϑ4
(
u−r
2K

) − u
d

dr
ln ϑ1

(
r

2K

)]
, (10.17)

where sn, cn and dn are the Jacobian elliptic functions defined by the relations

u =
∫ snu

0

dt√
(1 − t2)(1 − k2t2)

. (10.18)

and

cn2u + sn2u = 1

dn2u + k2sn2u = 1,
(10.19)

where u and r are given by

m = k2sn2r

sin ψ = snu.
(10.20)

Note that

0 <
β − α

1 − α
< k2.
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Thus, by observing that sn−1x = F(arcsin x, k), we may write u = sn−11 = K and

r = F

(
arcsin

1

k

√
β − α

1 − α
, k

)
= F(φ, k),

with φ as defined in (8.7). Consequently we find that

�

(
β − α

1 − α
, k

)
=

√
(1 − α)(1 + β)

2(1 − β)

ϑ ′
1

(
r

2K

)
ϑ1
(

r
2K

) ,
since ϑ4

(
u + 1

2

) = ϑ3(u). From (8.6), r
2K = u+ and so that

k0 = 2

A

ϑ ′
1(u

+)

ϑ1(u+)
− 1 (10.21)

and hence observe, with reference to (8.34), that

k0 = − lim
n→∞

c0(n)

n
. (10.22)

It will become apparent that V is a quantity of great importance. We now proceed by
simplifying the expression for the potential in (10.8), which by using (10.10) is given by

V = −
∫
E

Ug(x)

y
ln(1 − x) dx. (10.23)

Using the convenient integral representation

ln(1 − x) =
∫ 1

0

x dλ

xλ − 1
,

it follows that

V = − i

π

∫ 1

0

dλ

λ

∫
E

x(xg + kg−1x
g−1 + · · · + k0)(

x − 1
λ

)
y

dx.

The second integral on the right-hand side is easily evaluated; using the contour � as defined
in section 2 and Cauchy’s integral theorems∫

E

xj

y
dx =

{
0 for j < g

−iπ for j = g,

and for 1
λ
/∈ E ∫

E

xg + kg−1x
g−1 + · · · + k0(

x − 1
λ

)
y

dx = iπ
λ−g + kg−1λ

1−g + · · · + k0√(
1
λ2 − 1

)∏g

j=1

(
1
λ

− αj

)(
1
λ

− βj

) .
If t = 1

λ
, then

V =
∫ ∞

1

(
tg + kg−1t

g−1 + · · · + k0√
(t2 − 1)

∏g

j=1(t − αj )(t − βj )
− 1

t

)
dt. (10.24)

Recalling (5.6) it is evident that V = χ0.
If S is a closed bounded set in the complex plane that contains infinitely many points, then

taking n of these points {xj : j = 1, . . . , n} and writing

dn :=
(

max
xj∈S

{1,...,n∏
j<k

|xj − xk|
})1/(n/2)

, (10.25)



4690 Y Chen and N Lawrence

Fekete [9] showed the limit as n → ∞ of the sequence {dn} exists and called this quantity the
transfinite diameter of the set S, denoted C(S). The proof of this existence theorem is also
presented in [27, theorem 21, p 71]. Considering the set of monic polynomials of degree n,
denoted by {πn(x)}, and taking

Mn := min
πn

{max
x∈S

|πn(x)|}, (10.26)

the transfinite diameter of S can then be identified [9] as the limit

C(S) = lim
n→∞M1/n

n . (10.27)

It is shown in [27, theorem 23, p 72] that there exists a unique polynomial tn(x) ∈ {πn(x)}
with the property that

max
x∈E

|tn(x)| = Mn. (10.28)

In the literature, tn is often referred to as the Chebyshev polynomial of degree n for the set
E. However, in this paper we reserve this title for the classical polynomials orthogonal on the
interval [−1, 1] and simply refer to tn as the extremal polynomial associated with the set E.

Due to a result by Szegö [24], we find that, for the set E considered in this paper,

C(E) = exp[−V ], (10.29)

whereV is of the form given in (10.8). (For a proof of the equivalence of the various expressions
for the transfinite diameter, the reader is referred to [27, theorem 26, p73].) Thus, when
E = [−1, α1] ∪g−1

i=1 [βi, αi+1] ∪ [βg, 1], the transfinite diameter is given by

C(E) = exp

[∫ ∞

1

(
1

t
− tg + kg−1t

g−1 + · · · + k0√
(t2 − 1)

∏g

j=1(t − αj )(t − βj )

)
dt

]
. (10.30)

This fact is well known and can be found in [30, p 226] and [3] among others.
We proceed by presenting some lemmas that will be required in order to show that extremal

polynomials associated with the set E tend towards Pn in the limit as n → ∞:

Lemma 10.1. Since the B period matrix has the property that Re{Bjk} = 0, j, k = 1, . . . , g,
for u = iû, with û ∈ R

g it follows that

ϑ(u;B) > 1. (10.31)

Proof.

ϑ(u;B) =
∑
s∈Zg

exp(iπ [(s, Bs) + 2(s,u)])

= 1 +

(∑
s∈Zg

s1�1

+
∑
s∈Zg

s1=0
s2�1

+ · · · +
∑
s∈Zg

s1=s2=···=sg−1=0

sg�1

)
eπ i(s,Bs)(e2π i(s,u) + e−2π i(s,u))

= 1 + 2

(∑
s∈Zg

s1�1

+
∑
s∈Zg

s1=0
s2�1

+ · · · +
∑
s∈Zg

s1=s2=···=sg−1=0

sg�1

)
eπ i(s,Bs) cosh 2π(s, û)) > 1.

�
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Lemma 10.2. The vector uαj
is given by the formula

uαj
= 1

2

j∑
k=1

∫
bk

dω +
ej

2
, (10.32)

where (ej )k = δjk . It then follows that

D = 2
g∑

j=1

uαj
= B




g

g − 1
...

1


 +




1
1
...

1


 (10.33)

Proof. We have for j = 1, . . . , g

uαj
=




∫ pβg

p1

dω +
g−j∑
k=0

∫ pαg−k

pβg−k

dω +
g−j−1∑
k=0

∫ pβg−k−1

pαg−k

dω if j < g∫ pβg

p1

dω +
∫ pαg

pβg

dω if j = g,

(10.34)

where all paths of integration lie in the +sheet of R and project onto the upper half of the
complex plane. Note that for k = 2, . . . , g∫ pβk−1

pαk

dω = − 1
2

∫
bk

dω = − 1
2Bek.

It then follows that
 0

...

0


 =

∫
E

dω = 1
2

g∑
k=1

∫
bk

dω +
∫ p1

pβg

dω

It is also easily shown that

ek =
∫
ak

dω = 2
g−k∑
l=0

∫ pαg−l

pβg−l

dω,

from which we deduce that

∫ pαk

pβk

dωl =




1
2 if k = l

− 1
2 if k = l − 1

0 otherwise.

Substituting these last few results into (10.34) the lemma follows. �
Lemma 10.3. Writing B = iB̃, we then have the following inequality for any u ∈ R

g with the
property that |uj | < 1;

|ϑ(u − D;B)| �
exp[−πg

υ
]√

det B̃
, (10.35)

where υ is the smallest eigenvalue of B̃.

Proof. Using (10.33) and the elementary properties of the theta function,

|ϑ(u − D;B)| = exp[π(t0, B̃t0)]|ϑ(u;B)|,
where t0 := (g, . . . , 1)T . Note that, as B̃ is positive definite,

(t0, B̃t0) � υ(t0, t0) � 0.
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Observe the following specialized modular transformation of the theta function known as the
Jacobi imaginary transformation [7, ch 2]:

ϑ(u;B) = ig/2

√
det B

exp[−π i(u, B−1u)]ϑ(B−1u; −B−1).

Using this result we find that

|ϑ(u;B)| = exp[−π(u, B̃−1u)]√
det B̃

|ϑ(−iB̃−1u; iB̃−1)|.

Since

(u, B̃−1u) � (u,u)

υ
� g

υ
,

we obtain

|ϑ(u − D;B)| �
exp[−πg

υ
]√

det B̃
|ϑ(−iB̃−1u; iB̃−1)|.

The result then follows by applying lemma 10.1. �
Lemma 10.4. Again writing B = iB̃, for any u ∈ R

g ,

|ϑ(u − D;B)| � exp[πg3υ̃]ϑ(0;B), (10.36)

where υ̃ is the greatest eigenvalue of B̃.

Proof. Using the quasi-periodic property of the theta function and lemma 10.2, we find

ϑ(u − D;B) = exp[2π i(u, t0)] exp[π(t0, B̃t0)]ϑ(u;B),

where t0 is defined as above, and hence

|ϑ(u − D;B)| = exp[π(t0, B̃t0)]|ϑ(u;B)|.
Note that, as B̃ is positive definite,

0 < (t0, B̃t0) � υ̃(t0, t0) � υ̃g3,

and from the definition for the theta function

|ϑ(u;B)| �
∑
s∈Zg

exp[−π(s, B̃s)] = ϑ(0;B),

concluding the proof. �
We now have sufficient information to prove the following theorem:

Theorem 10.5. The following limit holds:

lim
n→∞(max

x∈E
|Pn(x)|)1/n = C(E). (10.37)

Consequently we find that asymptotically the extremal polynomials for the set E tend towards
Pn(x).

Proof. If we can show that, for all x ∈ E,

|Pn(x)| � N(n)Cn(E), (10.38)

where N(n) is a positive function of n with the property that N
1
n → 1 as n → ∞, then it is

certainly true that

lim
n→∞(max

x∈E
|Pn(x)|)1/n � C(E). (10.39)

Equality must then follow by the properties of the transfinite diameter.
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By virtue of the expression for Pn(x) in (7.9) it is easily shown that for x ∈ [−1, α1 −
ε] ∪g−1

j=1 [βj , αj+1 − ε] ∪ [βg, 1], where ε > 0 is arbitrarily small but fixed, that

|Pn(x)| � N1(ε)Pn(1),

where N1(ε) is a positive real number independent of n. This follows from the fact that �n(x)

is real and γj (n), j = 1, . . . , g, are bounded in n. Now from the expression for Pn(x) in (5.21)
it immediately follows that

Pn(1) � e−nχ0

(ϑ(u− − D)ϑ(nB̂ − D)

ϑ(D)ϑ(u− + nB̂ − D)

 +

 ϑ(u+ − D)ϑ(nB̂ + D)

ϑ(D)ϑ(u+ − nB̂ − D)


)
. (10.40)

Note that B̂ is a vector with real components. This follows directly from its definition in (4.17)
and the fact (10.13) that relates d� to the equilibrium density of E. Indeed we uncover a
physical interpretation of the elements of B̂, finding that −B̂j is, in fact, equal to the proportion
of charges lying on the interval [βj−1, αj ], where β0 := −1. Thus for any u,

ϑ(nB̂ + u) = ϑ({nB̂} + u).

It also follows from the fact that the components of dω are real valued on the interval [1,∞) that
the vectors u+ and u− are elements of R

g with components such that u±
j ∈ [0, 1), j = 1, . . . , g.

Consequently it is easily shown by (10.35) and (10.36) that

|Pn(1)| � N2e−nχ0 ,

whereN2 is a positive constant independent of n. Recalling that χ0 = V and thatC(E) = e−V ,
we see that for all values of n and x ∈ [−1, α1)∪g−1

j=1 [βj , αj+1)∪ [βg, 1], there exists a positive
number N such that

|Pn(x)| � N(ε)Cn(E). (10.41)

It remains to consider the behaviour of |Pn(αj )|, j = 1, . . . , g. We can obtain expressions
for Pn(αj ) from (5.21) by expanding both En(px) and Ẽn(px) around the point pαj

. Without
loss of generality we assume that px is a point on the +sheet of R that corresponds to the real
value x = αj + δ, with 0 < δ � 1, and any integration contours joining p1 and px are smooth
non-self-intersecting and lie in the upper half of the +sheet. Writing ux = uαj

+ �u,

�ul =
∫ px

pαj

dωl = 2

( ∑g

k=1(A
−1)lkα

g−k

j√
(α2

j − 1)(αj − βj )
∏

1�m �=j�g[(αj − αm)(αj − βm)]

)√
δ + O(δ3/2)

=: 2Ll

√
δ + O(δ3/2), (10.42)

where this result follows directly from the local expansion of the expression for dωl given
in (4.2). Regarding �(px), it is easily shown by use of the normalization conditions given
in (4.16) that

�(pαj
) =

∫ pαj

p1

d� = π i

(
1 +

j∑
l=1

B̂l

)
. (10.43)

By expanding d� about pαj∫ px

pαj

d� = 2

(
α
g

j +
∑g−1

l=0 klα
l
j√

(α2
j − 1)(αj − βj )

∏
1�m �=j�g[(αj − αm)(αj − βm)]

)√
δ + O(δ3/2)

=: 2M
√
δ + O(δ3/2). (10.44)
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Using (10.42)–(10.44), from (5.21) we obtain an expansion of of Pn(αj +δ) in terms of powers
of δ. Setting δ = 0 we then find that

Pn(αj ) = e−nχ0∑g

k=1 ϑ
′
k(uαj

− D)Lk

[
e−n�(pαj

)
ϑ(u− − D)

ϑ(u− + nB̂ − D)

×
( g∑

l=1

ϑ ′
l (uαj

+ nB̂ − D)Ll − nMϑ(uαj
+ nB̂ − D)

)

+
en�(pαj

)
ϑ(u+ − D)

ϑ(u+ − nB̂ − D)

( g∑
l=1

ϑ ′
l (uαj

− nB̂ − D)Ll + nMϑ(uαj
− nB̂ − D)

)]
.

(10.45)

Note in particular that �(pαj
) is imaginary and that by construction |∑g

k=1 ϑ
′(uαj

− D| > 0
as both En and Ẽn have at most simple poles with respect to the local parameter at pαj

. Also
observe that

ϑ(uαj
± nB̂ − D) = ϑ(uαj

± {nB̂} − D)

ϑ ′
l (uαj

± nB̂ − D) = ϑ ′
l (uαj

± {nB̂} − D), l = 1, . . . , g.

Now, since the theta function is an entire function of g complex variables and consequently its
derivative is entire too [6, p 247–248], we conclude that both of these functions are bounded
above by a positive constant that is independent of n. Applying (10.35) and (10.36), it then
follows that for all values of n there exists a positive constant N3 such that

|Pn(αj )| � nN3e−nχ0 .

Since limn→∞ n1/n = 1, identifyingC(E)with e−χ0 , we see that for all values of x ∈ E, (10.38)
is satisfied, thus concluding the proof. �

Returning to the specific case where g = 1, we find an explicit expression for C(E).
Equation (10.24) is now

V =
∫ ∞

1

(
t + k0√

(t2 − 1)(t − α)(t − β)
− 1

t

)
dt.

Standard results for elliptic integrals [12] then give

V = lim
ν→∞

{2((1 − β)�
(
ψ(ν), 2

1+β , k
)

+ (β + k0)F (ψ(ν), k))
√
(1 − α)(1 + β)

− ln ν

}
,

where

sin ψ(ν) =
√

(β + 1)(ν − 1)

2(ν − β)
.

In order to consider the limit above we make use of the following identity [1, p 599], which
states that for l > 1

�(ψ, l, k) = −�(ψ,m, k) + F(ψ, k) +
1

2χ
ln

�(ψ) + χ tan ψ

�(ψ) + χ tan ψ

, (10.46)

with

m := k2

l

�(ψ) :=
√

1 − k2 sin2 ψ

χ :=
√
(1 − m)(l − 1).

(10.47)
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By expanding these quantities in terms of 1
ν
, the limit is

V = 2(1 + k0)√
(1 − α)(1 + β)

F (φ, k) +
2(β − 1)√

(1 − α)(1 + β)
�

(
φ,

β − α

1 − α
, k

)
− ln

β − α + 2

4
.

In order to exploit this result, we require an alternative representation in terms of theta functions.
Using (10.17), again we set r = F(φ, k), but this time u = sn−1√(1 + β)/2 = F(φ, k), thus

�

(
φ,

β − α

1 − α
, k

)
=

√
(1 − α)(1 + β)

β − 1

[
1

2
ln

ϑ4(2u+)

ϑ4(0)
− u+ ϑ

′
1(u

+)

ϑ1(u+)

]
,

having observed that r/2K = u+. Recalling that

k0 = 2

A

ϑ ′
1(u

+)

ϑ1(u+)
− 1,

we simplify the expression for the conductor potential substantially, obtaining

V = ln

[
4ϑ4(2u+)

(β − α + 2)ϑ4(0)

]
.

This can be further manipulated by using the following identities [12], [28, ch 9]:

ϑ1

(
u

K

)
=

√
kϑ4

(
u

K

)
sn2u

ϑ ′
1(0) = πϑ2(0)ϑ3(0)ϑ4(0)

ϑ2(0) =
√

2kK

π

ϑ3(0) =
√

2K

π
.

(10.48)

Combining these allows us to write

V = ln

[
ϑ1(2u+)

ϑ ′
1(0)

2K

(β − α + 2)sn2r

]
.

This can be simplified by employing the fact that [28, ch 10]

sn2u = 2snucnudnu

1 − k2sn4u
. (10.49)

Since snr = √
(1 + β)/2, cnr and dnr then follow from their respective definitions given

in (10.19), we then obtain

sn2r = 2
√
(1 − α)(1 + β)

(β − α + 2)
,

and finally arrive at the desired representation:

V = ln

[
Aϑ1(2u+)

ϑ ′
1(0)

]
. (10.50)

Hence in the case where E is composed of the two disjoint intervals of the real line, [−1, α]
and [β, 1], the transfinite diameter is identified as

C([−1, α] ∪ [β, 1]) = ϑ ′
1(0)

Aϑ1(2u+)
. (10.51)

Note that an equivalent expression for this quantity was derived by Akhiezer in his consideration
of Solotareff’s problem [5, p 288].
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We can now examine the behaviour of σn(x)/n of the genus 1 polynomial Pn, as n → ∞,
for x ranging over the set E. Recall that

σn(x) = p(x)

hn−1
[Pn(x)Pn−1(x)(f1(x; n) − f1(x; n − 1))

+ f2(x; n)Qn(x)Pn−1(x) − f2(x; n − 1)Pn(x)Qn−1(x)],

where

f1(x; n) := 1

2

(
1

x − γ (n)
− 1

x − α

)

f2(x; n) :=
nx − c0(n) − y1

2(x−γ (n))

x − α
.

(10.52)

Using (10.51) and (8.16) we uncover an expression for the L2 norm in terms of the transfinite
diameter:

hn = 2[C(E)]2n ϑ3((2n + 1)u+)

ϑ3((2n − 1)u+)
. (10.53)

Noting that for ϑ3(u) it has no real zeros, it is then easily shown that, as n → ∞,

hn ∼ [C(E)]2n. (10.54)

Restricting x to the interval [1, α) ∪ [β, 1], it follows from (10.41) that asymptotically

Pn(x)Pn−1(x)

hn−1
= O(1) (10.55)

and from (8.33) and (10.22), that

c0(n) = −nk0 + O(1)

as n → ∞. Therefore in this limit

f2(x; n) = n(x + k0)

x − α
+ O(1). (10.56)

Recalling (1.9), we see that for x ∈ [−1, α) ∪ [β, 1]

σn(x) � in(x + k0)

π
√
(x2 − 1)(x − α)(x − β)

, n → ∞,

that is

lim
n→∞

σn(x)

n
= σ ∗(x). (10.57)

Thus the equivalence of the equilibrium density for the set E and the limiting expression for
σn(x)/n, for x an interior point of E, has been established for the genus 1 case. This is the
‘scaling’ limit referred to in section 1.

It is important to note the restriction on values of x. In the limiting form above, the
appearance of

√
x − α in the denominator is due to the fact that

P ′
n(x) = f1(x; n)Pn(x) + f2(x; n)Qn(x),

where both f1 and f2 have poles at α. Clearly as P ′
n is a polynomial of degree n− 1, it has no

poles at any finite value of x. Thus if we were to write the expression above as a single rational
function the polynomial in the numerator would be identically zero when x = α. Thus referring
to (10.1), we see that σn(α) = 0 for all n. However, stipulating that x ∈ [−1, α) ∪ [β, 1], the
expressions for f1 and f2 are bounded in x and the asymptotic analysis proceeds as above.
The special nature of the point at α is clearly illustrated in figure 11. Here σ ∗(x) is plotted
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Figure 11. The equilibrium distributionσ ∗(x), contrasted withσn(x)/n, whereα = −0.1, β = 0.2
and n = 20.

together with σn(x)/n, with n = 20, α = −0.1 and β = 0.2, for x ∈ E. Note then the good
agreement at all points, apart from those in the immediate vicinity of α, where σ ∗(x) is shown
to diverge and σn(x)/n → 0.

Concerning the genus g � 1 case, using the expression for hn given in (5.13) instead
of (8.16), it still follows that

hn ∼ [C(E)]2n, n → ∞.

Thus if we can prove that as n → ∞, cj (n) = nčj + O(1), where čj is independent n, the
genus 1 analysis can be repeated and

lim
n→∞

σn(x)

n
= i

(
xg −∑g−1

j=0 čj x
j
)

π
√
(x2 − 1)

∏g

j=1(x − αj )(x − βj )
, x ∈ E\{αj : j = 1, . . . , g}.

(10.58)

In fact we have

Theorem 10.6.

lim
n→∞

cj

n
= −kj , j = 0, 1, . . . , g − 1. (10.59)

Proof. Using the expression of D and the quasi-periodicity of the theta function we can
simplify (5.21) and (5.22). Computing the derivative of Pn(x) with respect to x using the
simplified forms gives

P ′
n(x) = n�′(x)Rn(x)

+ Cn(E)

[
e−n�(x)ϑ−(n)

d

dx

ϑ(ux + {nB̂})
ϑ(ux)

+ en�(x)ϑ+(n)
d

dx

ϑ(ux − {nB̂})
ϑ(ux)

]
,

where

ϑ∓(n) := ϑ(u∓)

ϑ(u∓ ± {nB̂}) .

As noted previously ϑ±(n) is bounded in n and, for x ∈ E, �(x) is pure imaginary. Now since
ϑ(ux ± {nB̂}) is an entire function of g complex variables which in turn implies its derivative
is also an entire function, we conclude that, for any x fixed in E, d

dx ϑ(ux ± {nB̂}) is bounded
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(in n). Furthermore, according to a theorem from potential theory, for any closed bounded
sets S1 and S2 with S1 ⊂ S2, C(S1) � C(S2) [27, theorem 3.3, p 56]. Therefore taking S1 to
be our E and S2 to be [−1, 1], we have C(E) � C([−1, 1]) = 1

2 .
Thus for x fixed in E

P ′
n(x) = n�′(x)Rn(x) + O(1).

Comparing this with the first of the differential relations in (6.40), we find

w(x) lim
n→∞

f2(x)

n
= �′(x), (10.60)

for almost every x ∈ E. Noting the form of f2(x) given by (6.34) and the facts that γj and
yj are bounded in n, Pn(x) is seen to be bounded for x in E (in fact exponentially small in n,
since the transfinite diameter, C(E), is less than 1

2 ) and −iπσ ∗(x) = �′(x), we see that

lim
n→∞

cj (n)

n
= −kj , j = 0, 1, . . . , g − 1. (10.61)

�

We conclude this paper with the following remark. It is well known that the problem
of orthogonal polynomials can be equivalently reformulated as a matrix Riemann–Hilbert
problem [10]. Such a formulation will enable one to deduce, for example, non-linear equations
satisfied by an, bn, and those partial differential equations satisfied by them associated with
the change of the end points of the interval. Work is presently underway in this direction and
the results will be published in a separate paper.
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